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Abstract 

We discuss a set of metrics, which aims to facilitate the 
formation of symbol groups from a pseudoergodic 
information source. An optimal codification can then be 
applied on the symbols(such as Huffman Codes [1]) for 
zero memory sources where it tends to the theorical 
limit of compression limited by the entropy. These 
metrics can be used as a fitness measure of the 
individuals in the Vasconcelos genetic algorithm as an 
alternative to exhaustive search. 
 
Keywords. Metrics, information source, codification, 
entropy, genetic algorithm. 
 
1. Introduction 
 
In the original work of Shannon [2] the concept of 
amount of information assigned to a symbol is defined. 
Such symbol is generated by a source, which is 
assumed to be unknown but from which we can extract 
its probability. So, the associated information to that 
symbol can be defined as: 
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where si denotes the i-th symbol and pi denotes its 
probability. This definition satisfies two intuitive 
characteristics about information. First, it associates the 
most information to that symbol which is more 
unexpected, i.e., symbols which do not often occur 
provide more information than symbols which often do. 
Second, it encloses the idea that information must be 
additive, i.e. the information of two symbols must be 
equal to the sum of both of them. 
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This exhibits, clearly, the probabilities as a product and 
the amount of information as a sum. The basic concept 
associated to that definition is the average information of 
the source named entropy denoted by:  
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The above discussion tacitly assumes the statistical 
independence of the symbols. In fact, all the Classic 
Information Theory [3] is based on the fact that source 
information is ergodic. We say a process is ergodic if we 
can pass from a state to other and whenever ∞→t , the 
system reaches stabilization in an independent 
distribution from the initial state. In the practice, 
however, sources are not ergodic. In [2] Shannon 
discuses a set of English approximations series which he 
called first, second and third order to independent 
�symbols� and first and second order to English 
�words�. These two (arbitrary) choices are naturally 
desired. A symbol can be easily identified because it 
exists as a physical entity, while a �word� is delimited 
by spaces between symbols. If there were statistical 
independence, as we point  out, the election of n will be 
arbitrary, but Shannon affirmed  [4]: �Rather than 
continue with tetragram, : : : , n-gram structure it is easier 
and better to jump at this point to word units�. This 
affirmation reflects the nonergodicity of the information 
sources which we must often treat. 
 
2. Metasymbols 
 
We propose to identify groups of symbols  
(metasymbols) that, when optimally encoded, can give 
an approach to data compression. A metasymbol 
contains information about a symbol set not necessarily 
adjacent within a message. For example, given a 
message  msg  =  �abcdefghijklm�, a  decomposition   in 

 
 

metasymbols would be: M={abm, ef, d, ghijk, lc}. The 
grouping of nonadjacent symbols can be conceived as if 



the symbols moved with respect to their original 
position (index) within the message. From this point of 
view, the idea to move the symbols of its original 
position to codify them in an optimal way is not new, 
the Burrows-Wheeler Transform [5] is an example of 
this. Therefore, some permutation of the symbols in a 
string promotes compression of the complete message 
composed by strings later using a compression 
technique like Move To Front [6]. 
 The necessary number of metasymbols to codify a 
message is denoted by |M|, where ...} , , , , ,{M εδχβα= . 
In what follows we use Greek letters to represent 
metasymbols. The position of the symbols in the 
original message appears like a subscript. 
By definition, a metasymbol is considered different 
from another one if: 
a) The constituent symbols differ from those of any 
other metasymbol. 
Example:  3c2b1aα =  

     6f5e4aβ =  
b)  They differ in the relative positions (relative to the 
first symbol) of the symbols that compose them. 
Example: 

Let the message, msg =�a0a1b2a3c4a5a6a7� 
χ =                                   a0 a1 a3 
Absolute positions              0  1  3 
in the message msg. 
Relative positions                0  1 3 
to the first symbol of χ . 
δ =                           a5 a6 a7 
Absolute positions              5  6  7 
in the message msg. 
Relative positions               0  1  2 
to the first symbol of δ . 

 
c) They differ in the number of symbols that constitute 
the metasymbol, called in what follows, length of the 
metasymbol. 
 

Example:    

4βllength(βe
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Considering the metasymbols group, for nonadjacent 
symbols we introduce a special symbol *, meaning  
�lack of length� which allows us to fill up the spaces 
between the symbols of the message. For example, let 
the message be msg=�abcdefghijklm�. We can have the 
metasymbols shown in the table 1. 

Table 1. Some metasymbols and their lengths for the 
message “abcdefghijklm” 

 
Metasymbol Length 
α =a0b1c2 3 
β =d3e4f5**i8j9*l1 6      
χ =g6h7**k10*m12 4 

 
Symbol groups are chosen to build metasymbols which 
are independents from each other, hoping that, a 
codification like Huffman Coding [7] on the 
metasymbols provides better compression than when 
symbols were coded assuming each symbol it precedes 
was independent from it, i.e., we eliminated first order  
ergodic presumption of the source. 
Some questions arise when we deal with groups of 
symbol, such as: 
¿How many groups to build? 
¿How many symbols belong each group? 
¿What symbols belong to a group? 
¿How redundant must be a group? 
Motivated by the previous questions we have analyzed 
several metrics which are discussed next. 
 
3. Metrics for symbol clustering 
 
Some ideas about symbol clustering in a message with 
finite length L are: 

- If groups have length close to L, then there are 
not many repetitions of groups. Besides, in the 
worst case, the message is decomposed in just 
one group equal to the original message and 
that case is to be avoided. 

- If groups have minimal length close to 1, 
�metasymbols� are reduced to the original 
symbols and that case is also to be avoided. 

- To promote compression, there must exist 
groups that repeat and they may be found 
looking for patterns of coincidence between 
symbols and its positions.  

- A low number of metasymbols is desired in 
order to diminish the dictionary size in a 
codification like Huffman Coding. 

The last ideas may be resumed in three essential points: 
1. Diminish the number of metasymbols |M|. 
2. Maximize the length of each metasymbol, in 

order to favor (1). 
3.  Maximize the frequency of appearance of each 

metasymbol to promote compression. 
To this effect we have proposed the metrics shown in the 
table 2. 
 
 
 



 
Table 2. Metrics for symbol clustering 
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where : 

iF  The discrimination measurement 
represent different possibilities of 
classification  

imp  Metasymbol probability. 
The number of times the metasymbol mi  
appears (i.e. 

imf ) when we code the 

message, divided by N, the total number 
of groups in which the message was 

divided. 
N

imf

imp = . 

iml  The length of the metasymbol. 
Is the number of symbols which belongs 
to the metasymbol mi . 
The special symbol * doesn�t increase 

iml . 

|M|  The number of metasymbols founded 
when we divide the message in N 
groups. 
|M| y N are, in general, different. In fact,  
 N|M| ≤  and the equality is given when 
there are no repeated groups. 

imp log
 

The amount of information associated to 
the metasymbol mi. 

D  |M|log|M|2D +=  
It is an offset for the entropy of the 
message built with metasymbols. It 
allows us to penalize the growth of |M|. 

W  

W 1
|M|
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K
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K
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A scaling factor that allows forming 
repeated groups with length not slant to 
extreme values (1 y L) and controlled 
by the factor K. 

iml
f  The appearance frequency of the 

lengths of the groups. 
 
3.1 Comparing metrics 
In order to arrive to an acceptable metric we tried 
several alternatives. In what follows we briefly describe 
each of the metrics we explored included the one we 
were successful with. 
 
3.1.1 First metric 
  
Metric (1) is the entropy of the message written with 
metasymbols and presents some deficiencies: 

• Maximizing the entropy, yields group  
independence. The metric favors the emergence 
of large number of groups which are different 
from one another. Thus, metasymbols are equi-
probable and entropy is maximum[8]. 
For example: Let the message 
    msg=�aaabbbcccaaabbbccc� 

M1 = a0 
M2 = b3 
M3 = c6 
M4 = a1a2 
M5 = b4b5 
M6 = c7c8 
M7 = a9a10a11 
M8 = b12b13b14 
M9 = c15c16c17 

• Minimizing the number of metasymbols |M|,  
the metric just favors one metasymbol with 
length equals to L, the length of the original 
message, i.e., pm1=1, lm1=L and  F=0. 

 
3.1.2.  Second metric 
 
Metric (2) considers the length of each metasymbol as a 
weighting factor, in order to find the greater 
metasymbols. The result was poor symbol clustering 
because it minimize the number of metasymbols to one. 
 
3.1.3. Third metric  
 
Metric (3) tries to minimize the number of metasymbols 
by multiplying |M| with the entropy of the message 



decomposed in  metasymbols. The result was not 
satisfactory because |M| takes the number of 
metasymbols to 1. 
 
3.1.4. Fourth metric 
 
Metric (4) tried to diminish the number of metasymbols 
and maximize the length of the metasymbols. The result 
was unsuccessful because the number of metasymbols 
is reduced to 2 and the length is taken to L/2 but there is 
no repetition of the groups. If repetition of the 
metasymbol were found, then |M| is reduced to 1 and 
we have a compression ratio 2:1. 
 
3.1.5. Fifth metric 
 
Metric (5) considers that when we increase the length of 
the metasymbols, the possibility to find repetitive 
groups decreases and vice versa. There are two extreme 
cases: 

a) When there is only one metasymbols, its 
length decreases to the minimal value (equals 
1) and its frequency reaches its maximum 
value (equals L). 

b) When the length of the only one metasymbol is 
maximum (equals L) the frequency of the 
metasymbol is one. 

Neither the two last cases is desired. However, we think 
about the possibility that between a) and b) there is at 
least one point with lengths vs. frequencies such that 
there is a minimal number of metasymbols with the 
maximum length possible and in which case the 
codification is optimal, i.e., with maximum 
compression. Considering the previous ideas, we have 
proposed the fifth metric trying to find at least one of 
these points. 
 
4. Exhaustive search 
 
As we pointed out, the decomposition of a message in 
metasymbols is not unique, there are many possibilities 
to choose the number of metasymbols |M| and the 
symbols for each metasymbol. 
We will see the case of L=5. We emphasize that each 
symbol has a position (index) in the message, for 
example, if msg =�a b c d e�, then the symbols are s0 
=a, s1 =b, s2 =c, s3 =d y s4 =e, and its respective indices 
are 0,1,2,3 y 4. The relative indices in a metasymbol are 
calculated by subtracting the absolute position of the 
first symbol to the absolute position for each symbol, so 
the first relative index is always equals to zero. 
The number of metasymbols |M| can be 1,2,3,4 and 5. 
Given a value for |M| there are several possibilities for 

the lengths of each metasymbol as we can see in the 
table 3. 

 
Table 3. Possibilities for the lengths of the 
metasymbols when we discompose a message with 
length L=5 

 
Number of de 
Metasymbols 

Lengths Lengths 

|M|=1 5  
|M|=2 1+4 2+3 
|M|=3 1+1+3 1+2+2 
|M|=4 1+1+1+2  
M=5 1+1+1+1+1  

 
The possibilities (4+1), (3+2), (3+1+1), (2+1+2), ...,etc., 
are not considered because given a |M| value and a set of 
lengths, metasymbols explore all the different 
permutations between symbols. The problem can be 
expressed as: ¿How many possibilities are there when 
we divide a message with length L=5, taken all as a 
whole, or, one of five and four of four, or, two of five 
and three of three, or, one of five, one of four and three 
of three, etc.? 
We have  
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options to form metasymbols in a message when L=5. 
In fact, this problem is related to other NP- complete 
combinatorial problems such as �The light bulb 
problem�[9], �The Problem of Context Sensitive String 
Matching�[10], �Low Autocorrelation Binary 
Sequences�[11] and the "Statistical mechanics and the 
partitions of numbers"[12]. 
In this work, we are searching metasymbols with no 
negative relative subindices and ordered from the lowest 
absolute position to the largest absolute position. This 
implies that  the first symbol in a metasymbol has the 
lowest absolute position. 
  
5. Recursive grouping 
 
Once the metasymbols have been chosen, there exists 
the possibility that some metasymbols can be 
decomposed in more metasymbols over again. So, we 
may derive metasymbols from metasymbols. These we 
denoted as second order metasymbols. From these last 
we may derive third order metasymbols and so on. 
Consider, for example, the message msg1 = 
�xyazbxyczd�.  We identify the next metasymbols 

 9d*7*c*4b*2aα =  



 3z*1y0xβ =  
 |M| = 2 

βαβmsg1 =  
The reconstruction of msg1 from the metasymbols is as 
follows: 

βαβmsg1 =  
msg1= xy*z 
                a*b**c*d 
                      xy*z                 

 xyazbxyczdmsg1 =  
Now, we may examine another message msg2 = 
�xyazbxyczdxyazbxyczd� where we identify just one 
metasymbol  

9d8z7c6y5x4b3z2a1y0xχ =  
|M| = 1 

It is clear that the metasymbol χ can be decomposed as 
metasymbols α y β , which become second order 
metasymbols. The recurrent decomposition for msg2 is: 

msg2 = �xyazbxyczdxyazbxyczd�  
msg2 = δδ  

 where:   

9d8z7c6y5x4b3z2a1y0xδ =  

     9d*7*c*4b*2aα =  

 3z*1y0xβ =  

         αβδ =  
 
6. Experiments 
 
We now briefly report on some experiments which were 
conducted with the purpose of determining 
experimentally if the ideas behind the metrics were 
effective. 
 
6.1 Metrics evaluation through exhaustive 
search 
 
We realized an exhaustive search with different strings 
trying to find the best repetitive patterns. Some results 
for metrics 1,2,3 and 4 are showed in table 4.  
 
Table 4. Results of an exhaustive search evaluating 
metrics 1, 2, 3 and 4 
Mensaje F1 F2 F3 F4 
xxxxy 
 
 

M1 = x 
fm1=4 
 
M2 =y  
fm2=1 
 
 

M1 = 
xxx 
 
 fm1=1 
 
 
M2 =y  

M1 = 
xxx  
 
Fm1=1 
 
 
M2 =y  

M1 = 
xxx  
 
Fm1=1 
 
 
M2 = y  

 
 
 
 
 
F=0.72 

fm2=1 
 
M3 = x 
fm3=1 
 
F=0.78 
 

fm2=1 
 
M3 =x 
fm3=1 
 
F=0.78 

fm1=1 
 
M3 : x 
frec=1 
 
F=0.78 

xxxyy M1 : yy 
frec=1 
M2 : x 
frec=3 
 
 
 
 
F= 0.81 

M1 : 
xxy 
frec=1 
M2 : x 
frec=1 
M3 : y 
frec=1 
 
F=0.78 

M1 : 
xxy 
frec=1 
M2 : x 
frec=1 
M3 : y 
frec=1 
 
F=0.78 

M1 : 
xxy 
frec=1 
M2 : x 
frec=1 
M3 : y 
frec=1 
 
F=0.78 

Xyazxyb
z 

M1 : 
xyaxyb 
frec=1 
M2 : z 
frec=2 
 
 
 
 
 
 
 
F= 0.91 

M1 : 
xyaz 
frec=1 
M2 : x 
frec=1 
M3 : y 
frec=1 
M4 : z 
frec=1 
M5 : b 
frec=1 
 
F=0.55 

M1 : 
xyaz 
frec=1 
M2 : x 
frec=1 
M3 : y 
frec=1 
M4 : z 
frec=1 
M5 : b 
frec=1 
 
F=0.55 

M1 : 
xyaz 
frec=1 
M2 : x 
frec=1 
M3 : y 
frec=1 
M4 : z 
frec=1 
M5 : b 
frec=1 
 
F=0.55 

abcdabcd M1 : 
abcd 
frec=2 
 
 
 
 
 
 
 
 
 
F= 0.0 

M1 : 
abcd 
frec=1 
M2 : a 
frec=1 
M3 : b 
frec=1 
M4 : d 
frec=1 
M5 : c 
frec=1 
 
F=0.55 

M1 : 
abcd 
frec=1 
M2 : a 
frec=1 
M3 : b 
frec=1 
M4 : d 
frec=1 
M5 : c 
frec=1 
 
F=0.55 

M1 : 
abcd 
frec=1 
M2 : a 
frec=1 
M3 : b 
frec=1 
M4 : d 
frec=1 
M5 : c 
frec=1 
 
F=0.55 

zxxyyzz M1 : 
xxyy 
frec=1 
M2 : z 
frec=3 
 
 
 
 
 
 
 
 

M1 : 
zx 
frec=1 
M2 : 
yz 
frec=1 
M3 : x 
frec=1 
M4 : y 
frec=1 
M5 : z 
frec=1 
 

M1 : 
zx 
frec=1 
M2 : 
yz 
frec=1 
M3 : x 
frec=1 
M4 : y 
frec=1 
M5 : z 
frec=1 
 

M1 : 
zx 
frec=1 
M2 : 
yz 
frec=1 
M3 : x 
frec=1 
M4 : y 
frec=1 
M5 : z 
frec=1 
 



F= 0.81 F=0.59 F=0.59 F=0.59 
 
With the message �xxxxy� we have the next 
observations: 

Metric 1 identifies that symbol x is repeated 4 
times and that symbol y is different. 
Metrics 2,3 y 4 build metasymbols 
unnecessarily. 

With the message �xxxyy� we have the next 
observations: 

Metric 1 identifies the fact that symbol x is 
repeated 3 times and that symbol y is repeated 
2 times. 
Metrics 2, 3 and 4 build metasymbols 
unnecessarily. 

With the message �xyazxybz� we have the next 
observations: 

Metric 1 does not identify that pattern xy*z is 
repeated twice, complemented by symbols a 
and b. In other words xyazxybz can be 
expressed thus: 
xyazxybz=xy*z yxy*z 

        a         b 
Metrics 2,3 y 4 build metasymbols unnecessarily. 
Exhaustive search requires extensive computational 
resources. In fact, those metrics have not been tested 
with strings of more than 12 characters. The time 
required on a PC @ 1GHz, 128MB-RAM to evaluate a 
string with 12 characters and just one metric was 
approximately 12 hours and we emphasize that 
demanded time growths exponentially. 
As an alternative, we have programmed a Vasconcelos 
Genetic Algorithm [13] and we used metric 5 because 
this metric has shown the best result in all cases studied. 
Now, we exemplify from the following experiment. 
Message1 = �xyxxxwxx� 
Vasconcelos Genetic Algorithm 
Population size = 400  
Number of generations = 100  
Mutation probability Pm=0.85  
Crossover probability Pc= 0.05  
K=1.45  
Length=8 characters 
The best individual has: 
F5 = -0.366800  
N      = 3  
M      = 2  
Groups: 
  y w  length =2 repeated =0  

 1 5  
  x  x x  length =3 repeated =0  
   0 2 3  
  x  x x  length =3 repeated =1  
   4 6 7  
Metasymbols: 

M={y1w5 , x0x2x3 } 
Time used =    11 seconds. 
In figure 1 we show the metasymbols found in the 
message �xyxxxwxx� 
 

 
Figure 1. Metasymbols found in a message with 8 

characters,  M={ y1w5 , x0x2x3 } 
 
Message2 = �xyAzxyBzxyCzxyDz� 
Vasconcelos Genetic Algorithm 
Population size = 400  
Number of generations = 400  
Mutation probability Pm=0.75  
Crossover probability Pc =0.07  
K=1.1 
Length=16 characters 
The best individual has: 
F5 = -0.012585  
N      = 5  
M     = 2  
Groups: 
     A B C  D length=4 repeated=0  
     2  6 10 14  
     x    y   z   length =3 repeated =0  
     12 13 15  
     x    y   z   length =3 repeated =1  
     4   5    7  
     x    y   z   length =3 repeated =1  
     8    9  11  
     x    y   z   length =3 repeated =1  
     0    1   3  
Metasymbols: 
M={A2B6C10D14 , x12y13z15 } 
Time used =   2 minutes and 30 seconds. 
In figure 2 we show the metasymbols found in the 
message �xyAzxyBzxyCzxyDz� using metric 5. The 
index in the message is calculated adding the horizontal 
and the vertical coordinate. 
 

 



Figure 2. Metasymbols found in a message with 16 
characters,  M={A2B6C10D14 , x12y13z15 } 

 
 
 
Message3 = �xrcaaxrrcacaxrcxaxrcxrcaaxrrcabc� 
Vasconcelos Genetic Algorithm 
Population size = 400  
Number of generations = 400  
Mutation probability Pm=0.75  
Crossover probability Pc =0.07  
K=1.3 
Length =32 characters 
The best individual has: 
F5= -0.000089  
 N      = 9  
 M      = 5  
Groups: 
 x a   x   x     length =4 repeated =0  
 5 11 20 25  
 r   c   a   b    length =4 repeated =0  
             13 14 24 30  
             x   a    r   c    length =4 repeated =0  
             12 16 18 31  
 r  c a            length =3 repeated =0  
 7 8 9  
 c   x   x   r    length =4 repeated =0  
              10 15 17 26 
 x a  r  c        length =4 repeated =1  
 0 4 6 19  
 r    c   a        length =3 repeated =1  
 21 22 23  
 r    c   a        length =3 repeated =1  
 27 28 29  
 r  c a            length =3 repeated =1  
 1 2 3  
 
Metasymbols: 
M={x5a11x20x25,  r13c14a24b30, x12a16r18c31, r7c 8a 9, 
c10x15x17r26 } 
Time used =   8 minutes and 5 seconds. 
In figure 3 we show the metasymbols found in the 
message �xrcaaxrrcacaxrcxaxrcxrcaaxrrcabc� 
 

 
Figure 3. Metasymbols found in a message with 32 
characters, M={x5a11x20x25,  r13c14a24b30, x12a16r18c31, 

r7c 8a 9, c10x15x17r26} 
 
Case 1. The metric found in 11 seconds that the 
metasymbol x0x2x3 was repeated twice and that 
metasymbol y1w5  was the complement of the message. 
In figure 1 we can easily identify the three groups in 
which the message �xyxxxwxx� was divided.  
In case 2, the metric is able to find that a pattern with no 
contiguous symbols x, y and z is repeated three times 
which is very good. Besides, a minimal of two 
metasymbols were found and the length  of each one is 
not slant to the extreme values 1 and 16. The time 
required for this result was approximately 2 minutes 
which compared with the exhaustive search is too many 
times lower. In figure 2 we can easily see how the 
metasymbol x12y13z15 is  repeated four times. 
In case 3, the metric found a set of 5 metasymbols from 
a partition of 9 groups, and that is very good. In figure 3 
metasymbols can be easily identified by means of 
triangles, squares, circles, rectangles  and ellipsoids. 
Groups weren�t drawn because they make less clear the 
visualization. As we can see, metasymbols has no 
contiguous symbols and theirs lengths aren�t slant to the 
extreme values 1 and 32. The time required for this 
result was approximately 8 minutes which is a very good 
in comparison with the time required by the exhaustive 
search. 
So we can say, metric 5 has provided the best result in 
comparison to the other metrics (1,2,3 and 4). Metrics 
1,2,3 and 4 fails with simple strings while metric 5 has 
been probed successfully with strings of 16 and 32 
characters. Here we have shown a few results in order to 
illustrate its performance. 
 
 



7. Conclusions 
 
Exhaustive search of metasymbols is not to be 
recommended because of its computational complexity. 
As an alternative to reduce the search time is possible to 
use a genetic Algorithm and in particular a Vasconcelos 
Genetic Algorithm where the measure of fitness can be 
metric 5. In order to code a message decomposed in 
metasymbols and compare the result with the original 
Huffman coding we intend to test with messages of 
larger length. 
 It is very important to stress that the problem 
we are attempting to solve has applications in various 
fields. For example, it may be applied in cryptography, 
large data bases matching, internet search engines, 
automatic translation, etc. 
 The analysis of exploration of the metrics 
mentioned above does not convey the inherent 
difficulty which is found in the problem. Furthermore, 
we intend to approach the problem with the aid of 
alternative soft computing techniques, such as 
multilayer backpropagation networks and support 
vector machines. These tools will enable us to attempt a 
classification of the groups of metasymbols to make our 
search more efficient. 
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