
Metrics for Symbol Clustering from a Pseudoergodic Information Source

Angel F. Kuri Morales
Instituto Autónomo de México
Río Hondo No. 1 México D.F.

akuri@rhon.itam.mx

Oscar Herrera Alcántara
Centro de Investigación en Computación
Av. Juan de Dios Batiz s/n México D. F.

heoscar@yahoo.com

Abstract

We discuss a set of metrics, which aims to facilitate the
formation of symbol groups from a pseudoergodic
information source. An optimal codification can then be
applied on the symbols(such as Huffman Codes [1]) for
zero memory sources where it tends to the theorical
limit of compression limited by the entropy. These
metrics can be used as a fitness measure of the
individuals in the Vasconcelos genetic algorithm as an
alternative to exhaustive search.

Keywords. Metrics, information source, codification,
entropy, genetic algorithm.

1. Introduction

In the original work of Shannon [2] the concept of
amount of information assigned to a symbol is defined.
Such symbol is generated by a source, which is
assumed to be unknown but from which we can extract
its probability. So, the associated information to that
symbol can be defined as:

)
ip

1
log(log(pi))iI(s =−=

where si denotes the i-th symbol and pi denotes its
probability. This definition satisfies two intuitive
characteristics about information. First, it associates the
most information to that symbol which is more
unexpected, i.e., symbols which do not often occur
provide more information than symbols which often do.
Second, it encloses the idea that information must be
additive, i.e. the information of two symbols must be
equal to the sum of both of them.
)2s,1I(s)2I(s)1I(s =+

 











==

p1p2
1

log
p1,2

1
log

p2
1

log
p1
1

log +=

This exhibits, clearly, the probabilities as a product and
the amount of information as a sum. The basic concept
associated to that definition is the average information of
the source named entropy denoted by:

∑= 












ip
1

logipH(x)

The above discussion tacitly assumes the statistical
independence of the symbols. In fact, all the Classic
Information Theory [3] is based on the fact that source
information is ergodic. We say a process is ergodic if we
can pass from a state to other and whenever ∞→t , the
system reaches stabilization in an independent
distribution from the initial state. In the practice,
however, sources are not ergodic. In [2] Shannon
discuses a set of English approximations series which he
called first, second and third order to independent
�symbols� and first and second order to English
�words�. These two (arbitrary) choices are naturally
desired. A symbol can be easily identified because it
exists as a physical entity, while a �word� is delimited
by spaces between symbols. If there were statistical
independence, as we point out, the election of n will be
arbitrary, but Shannon affirmed [4]: �Rather than
continue with tetragram, : : : , n-gram structure it is easier
and better to jump at this point to word units�. This
affirmation reflects the nonergodicity of the information
sources which we must often treat.

2. Metasymbols

We propose to identify groups of symbols
(metasymbols) that, when optimally encoded, can give
an approach to data compression. A metasymbol
contains information about a symbol set not necessarily
adjacent within a message. For example, given a
message msg = �abcdefghijklm�, a decomposition in

metasymbols would be: M={abm, ef, d, ghijk, lc}. The
grouping of nonadjacent symbols can be conceived as if

the symbols moved with respect to their original
position (index) within the message. From this point of
view, the idea to move the symbols of its original
position to codify them in an optimal way is not new,
the Burrows-Wheeler Transform [5] is an example of
this. Therefore, some permutation of the symbols in a
string promotes compression of the complete message
composed by strings later using a compression
technique like Move To Front [6].
 The necessary number of metasymbols to codify a
message is denoted by |M|, where ...} , , , , ,{M εδχβα= .
In what follows we use Greek letters to represent
metasymbols. The position of the symbols in the
original message appears like a subscript.
By definition, a metasymbol is considered different
from another one if:
a) The constituent symbols differ from those of any
other metasymbol.
Example: 3c2b1aα =

 6f5e4aβ =
b) They differ in the relative positions (relative to the
first symbol) of the symbols that compose them.
Example:

Let the message, msg =�a0a1b2a3c4a5a6a7�
χ = a0 a1 a3
Absolute positions 0 1 3
in the message msg.
Relative positions 0 1 3
to the first symbol of χ .
δ = a5 a6 a7
Absolute positions 5 6 7
in the message msg.
Relative positions 0 1 2
to the first symbol of δ .

c) They differ in the number of symbols that constitute
the metasymbol, called in what follows, length of the
metasymbol.

Example:

4βllength(βe

3αllength(αe
6d5c4b5aβ

2c1b0aα

==

==

=

=

Considering the metasymbols group, for nonadjacent
symbols we introduce a special symbol *, meaning
�lack of length� which allows us to fill up the spaces
between the symbols of the message. For example, let
the message be msg=�abcdefghijklm�. We can have the
metasymbols shown in the table 1.

Table 1. Some metasymbols and their lengths for the
message “abcdefghijklm”

Metasymbol Length
α =a0b1c2 3
β =d3e4f5**i8j9*l1 6
χ =g6h7**k10*m12 4

Symbol groups are chosen to build metasymbols which
are independents from each other, hoping that, a
codification like Huffman Coding [7] on the
metasymbols provides better compression than when
symbols were coded assuming each symbol it precedes
was independent from it, i.e., we eliminated first order
ergodic presumption of the source.
Some questions arise when we deal with groups of
symbol, such as:
¿How many groups to build?
¿How many symbols belong each group?
¿What symbols belong to a group?
¿How redundant must be a group?
Motivated by the previous questions we have analyzed
several metrics which are discussed next.

3. Metrics for symbol clustering

Some ideas about symbol clustering in a message with
finite length L are:

- If groups have length close to L, then there are
not many repetitions of groups. Besides, in the
worst case, the message is decomposed in just
one group equal to the original message and
that case is to be avoided.

- If groups have minimal length close to 1,
�metasymbols� are reduced to the original
symbols and that case is also to be avoided.

- To promote compression, there must exist
groups that repeat and they may be found
looking for patterns of coincidence between
symbols and its positions.

- A low number of metasymbols is desired in
order to diminish the dictionary size in a
codification like Huffman Coding.

The last ideas may be resumed in three essential points:
1. Diminish the number of metasymbols |M|.
2. Maximize the length of each metasymbol, in

order to favor (1).
3. Maximize the frequency of appearance of each

metasymbol to promote compression.
To this effect we have proposed the metrics shown in the
table 2.

Table 2. Metrics for symbol clustering

∑
=

=
|M|

1i
)

imp

1
logim(p1F

(1)

∑
=

=
|M|

1i
iml

)
imp

1
logim(p

2F

(2)

∑
=

=
|M|

1i
)

imp

1
logim(p|M|3F

(3)

∑
=

=
|M|

1i
iml

)
imp

1
logim(p

|M|4F

(4)

W

D
||M

1i
)

imp

1
logim(p

5F

−∑
=

=









(5)

where :

iF The discrimination measurement
represent different possibilities of
classification

imp Metasymbol probability.
The number of times the metasymbol mi
appears (i.e.

imf) when we code the

message, divided by N, the total number
of groups in which the message was

divided.
N

imf

imp = .

iml The length of the metasymbol.
Is the number of symbols which belongs
to the metasymbol mi .
The special symbol * doesn�t increase

iml .

|M| The number of metasymbols founded
when we divide the message in N
groups.
|M| y N are, in general, different. In fact,
 N|M| ≤ and the equality is given when
there are no repeated groups.

imp log

The amount of information associated to
the metasymbol mi.

D |M|log|M|2D +=
It is an offset for the entropy of the
message built with metasymbols. It
allows us to penalize the growth of |M|.

W

W 1
|M|

1i
iml

f
K

)
K

iml
(−∏

=
=

A scaling factor that allows forming
repeated groups with length not slant to
extreme values (1 y L) and controlled
by the factor K.

iml
f The appearance frequency of the

lengths of the groups.

3.1 Comparing metrics
In order to arrive to an acceptable metric we tried
several alternatives. In what follows we briefly describe
each of the metrics we explored included the one we
were successful with.

3.1.1 First metric

Metric (1) is the entropy of the message written with
metasymbols and presents some deficiencies:

• Maximizing the entropy, yields group
independence. The metric favors the emergence
of large number of groups which are different
from one another. Thus, metasymbols are equi-
probable and entropy is maximum[8].
For example: Let the message
 msg=�aaabbbcccaaabbbccc�

M1 = a0
M2 = b3
M3 = c6
M4 = a1a2
M5 = b4b5
M6 = c7c8
M7 = a9a10a11
M8 = b12b13b14
M9 = c15c16c17

• Minimizing the number of metasymbols |M|,
the metric just favors one metasymbol with
length equals to L, the length of the original
message, i.e., pm1=1, lm1=L and F=0.

3.1.2. Second metric

Metric (2) considers the length of each metasymbol as a
weighting factor, in order to find the greater
metasymbols. The result was poor symbol clustering
because it minimize the number of metasymbols to one.

3.1.3. Third metric

Metric (3) tries to minimize the number of metasymbols
by multiplying |M| with the entropy of the message

decomposed in metasymbols. The result was not
satisfactory because |M| takes the number of
metasymbols to 1.

3.1.4. Fourth metric

Metric (4) tried to diminish the number of metasymbols
and maximize the length of the metasymbols. The result
was unsuccessful because the number of metasymbols
is reduced to 2 and the length is taken to L/2 but there is
no repetition of the groups. If repetition of the
metasymbol were found, then |M| is reduced to 1 and
we have a compression ratio 2:1.

3.1.5. Fifth metric

Metric (5) considers that when we increase the length of
the metasymbols, the possibility to find repetitive
groups decreases and vice versa. There are two extreme
cases:

a) When there is only one metasymbols, its
length decreases to the minimal value (equals
1) and its frequency reaches its maximum
value (equals L).

b) When the length of the only one metasymbol is
maximum (equals L) the frequency of the
metasymbol is one.

Neither the two last cases is desired. However, we think
about the possibility that between a) and b) there is at
least one point with lengths vs. frequencies such that
there is a minimal number of metasymbols with the
maximum length possible and in which case the
codification is optimal, i.e., with maximum
compression. Considering the previous ideas, we have
proposed the fifth metric trying to find at least one of
these points.

4. Exhaustive search

As we pointed out, the decomposition of a message in
metasymbols is not unique, there are many possibilities
to choose the number of metasymbols |M| and the
symbols for each metasymbol.
We will see the case of L=5. We emphasize that each
symbol has a position (index) in the message, for
example, if msg =�a b c d e�, then the symbols are s0
=a, s1 =b, s2 =c, s3 =d y s4 =e, and its respective indices
are 0,1,2,3 y 4. The relative indices in a metasymbol are
calculated by subtracting the absolute position of the
first symbol to the absolute position for each symbol, so
the first relative index is always equals to zero.
The number of metasymbols |M| can be 1,2,3,4 and 5.
Given a value for |M| there are several possibilities for

the lengths of each metasymbol as we can see in the
table 3.

Table 3. Possibilities for the lengths of the
metasymbols when we discompose a message with
length L=5

Number of de
Metasymbols

Lengths Lengths

|M|=1 5
|M|=2 1+4 2+3
|M|=3 1+1+3 1+2+2
|M|=4 1+1+1+2
M=5 1+1+1+1+1

The possibilities (4+1), (3+2), (3+1+1), (2+1+2), ...,etc.,
are not considered because given a |M| value and a set of
lengths, metasymbols explore all the different
permutations between symbols. The problem can be
expressed as: ¿How many possibilities are there when
we divide a message with length L=5, taken all as a
whole, or, one of five and four of four, or, two of five
and three of three, or, one of five, one of four and three
of three, etc.?
We have

306
1
1

1
2

1
3

1
4

1
5

2
2

1
3

1
4

1
5

2
2

2
4

1
5

3
3

1
4

1
5

3
3

2
5

4
4

1
5

5
5

=





























+























+

+

















+

















+











+











+






options to form metasymbols in a message when L=5.
In fact, this problem is related to other NP- complete
combinatorial problems such as �The light bulb
problem�[9], �The Problem of Context Sensitive String
Matching�[10], �Low Autocorrelation Binary
Sequences�[11] and the "Statistical mechanics and the
partitions of numbers"[12].
In this work, we are searching metasymbols with no
negative relative subindices and ordered from the lowest
absolute position to the largest absolute position. This
implies that the first symbol in a metasymbol has the
lowest absolute position.

5. Recursive grouping

Once the metasymbols have been chosen, there exists
the possibility that some metasymbols can be
decomposed in more metasymbols over again. So, we
may derive metasymbols from metasymbols. These we
denoted as second order metasymbols. From these last
we may derive third order metasymbols and so on.
Consider, for example, the message msg1 =
�xyazbxyczd�. We identify the next metasymbols

 9d*7*c*4b*2aα =

 3z*1y0xβ =
 |M| = 2

βαβmsg1 =
The reconstruction of msg1 from the metasymbols is as
follows:

βαβmsg1 =
msg1= xy*z
 a*b**c*d
 xy*z

 xyazbxyczdmsg1 =
Now, we may examine another message msg2 =
�xyazbxyczdxyazbxyczd� where we identify just one
metasymbol

9d8z7c6y5x4b3z2a1y0xχ =
|M| = 1

It is clear that the metasymbol χ can be decomposed as
metasymbols α y β , which become second order
metasymbols. The recurrent decomposition for msg2 is:

msg2 = �xyazbxyczdxyazbxyczd�
msg2 = δδ

 where:

9d8z7c6y5x4b3z2a1y0xδ =

 9d*7*c*4b*2aα =

 3z*1y0xβ =

 αβδ =

6. Experiments

We now briefly report on some experiments which were
conducted with the purpose of determining
experimentally if the ideas behind the metrics were
effective.

6.1 Metrics evaluation through exhaustive
search

We realized an exhaustive search with different strings
trying to find the best repetitive patterns. Some results
for metrics 1,2,3 and 4 are showed in table 4.

Table 4. Results of an exhaustive search evaluating
metrics 1, 2, 3 and 4
Mensaje F1 F2 F3 F4
xxxxy

M1 = x
fm1=4

M2 =y
fm2=1

M1 =
xxx

 fm1=1

M2 =y

M1 =
xxx

Fm1=1

M2 =y

M1 =
xxx

Fm1=1

M2 = y

F=0.72

fm2=1

M3 = x
fm3=1

F=0.78

fm2=1

M3 =x
fm3=1

F=0.78

fm1=1

M3 : x
frec=1

F=0.78

xxxyy M1 : yy
frec=1
M2 : x
frec=3

F= 0.81

M1 :
xxy
frec=1
M2 : x
frec=1
M3 : y
frec=1

F=0.78

M1 :
xxy
frec=1
M2 : x
frec=1
M3 : y
frec=1

F=0.78

M1 :
xxy
frec=1
M2 : x
frec=1
M3 : y
frec=1

F=0.78

Xyazxyb
z

M1 :
xyaxyb
frec=1
M2 : z
frec=2

F= 0.91

M1 :
xyaz
frec=1
M2 : x
frec=1
M3 : y
frec=1
M4 : z
frec=1
M5 : b
frec=1

F=0.55

M1 :
xyaz
frec=1
M2 : x
frec=1
M3 : y
frec=1
M4 : z
frec=1
M5 : b
frec=1

F=0.55

M1 :
xyaz
frec=1
M2 : x
frec=1
M3 : y
frec=1
M4 : z
frec=1
M5 : b
frec=1

F=0.55

abcdabcd M1 :
abcd
frec=2

F= 0.0

M1 :
abcd
frec=1
M2 : a
frec=1
M3 : b
frec=1
M4 : d
frec=1
M5 : c
frec=1

F=0.55

M1 :
abcd
frec=1
M2 : a
frec=1
M3 : b
frec=1
M4 : d
frec=1
M5 : c
frec=1

F=0.55

M1 :
abcd
frec=1
M2 : a
frec=1
M3 : b
frec=1
M4 : d
frec=1
M5 : c
frec=1

F=0.55

zxxyyzz M1 :
xxyy
frec=1
M2 : z
frec=3

M1 :
zx
frec=1
M2 :
yz
frec=1
M3 : x
frec=1
M4 : y
frec=1
M5 : z
frec=1

M1 :
zx
frec=1
M2 :
yz
frec=1
M3 : x
frec=1
M4 : y
frec=1
M5 : z
frec=1

M1 :
zx
frec=1
M2 :
yz
frec=1
M3 : x
frec=1
M4 : y
frec=1
M5 : z
frec=1

F= 0.81 F=0.59 F=0.59 F=0.59

With the message �xxxxy� we have the next
observations:

Metric 1 identifies that symbol x is repeated 4
times and that symbol y is different.
Metrics 2,3 y 4 build metasymbols
unnecessarily.

With the message �xxxyy� we have the next
observations:

Metric 1 identifies the fact that symbol x is
repeated 3 times and that symbol y is repeated
2 times.
Metrics 2, 3 and 4 build metasymbols
unnecessarily.

With the message �xyazxybz� we have the next
observations:

Metric 1 does not identify that pattern xy*z is
repeated twice, complemented by symbols a
and b. In other words xyazxybz can be
expressed thus:
xyazxybz=xy*z yxy*z

 a b
Metrics 2,3 y 4 build metasymbols unnecessarily.
Exhaustive search requires extensive computational
resources. In fact, those metrics have not been tested
with strings of more than 12 characters. The time
required on a PC @ 1GHz, 128MB-RAM to evaluate a
string with 12 characters and just one metric was
approximately 12 hours and we emphasize that
demanded time growths exponentially.
As an alternative, we have programmed a Vasconcelos
Genetic Algorithm [13] and we used metric 5 because
this metric has shown the best result in all cases studied.
Now, we exemplify from the following experiment.
Message1 = �xyxxxwxx�
Vasconcelos Genetic Algorithm
Population size = 400
Number of generations = 100
Mutation probability Pm=0.85
Crossover probability Pc= 0.05
K=1.45
Length=8 characters
The best individual has:
F5 = -0.366800
N = 3
M = 2
Groups:
 y w length =2 repeated =0

 1 5
 x x x length =3 repeated =0
 0 2 3
 x x x length =3 repeated =1
 4 6 7
Metasymbols:

M={y1w5 , x0x2x3 }
Time used = 11 seconds.
In figure 1 we show the metasymbols found in the
message �xyxxxwxx�

Figure 1. Metasymbols found in a message with 8

characters, M={ y1w5 , x0x2x3 }

Message2 = �xyAzxyBzxyCzxyDz�
Vasconcelos Genetic Algorithm
Population size = 400
Number of generations = 400
Mutation probability Pm=0.75
Crossover probability Pc =0.07
K=1.1
Length=16 characters
The best individual has:
F5 = -0.012585
N = 5
M = 2
Groups:
 A B C D length=4 repeated=0
 2 6 10 14
 x y z length =3 repeated =0
 12 13 15
 x y z length =3 repeated =1
 4 5 7
 x y z length =3 repeated =1
 8 9 11
 x y z length =3 repeated =1
 0 1 3
Metasymbols:
M={A2B6C10D14 , x12y13z15 }
Time used = 2 minutes and 30 seconds.
In figure 2 we show the metasymbols found in the
message �xyAzxyBzxyCzxyDz� using metric 5. The
index in the message is calculated adding the horizontal
and the vertical coordinate.

Figure 2. Metasymbols found in a message with 16
characters, M={A2B6C10D14 , x12y13z15 }

Message3 = �xrcaaxrrcacaxrcxaxrcxrcaaxrrcabc�
Vasconcelos Genetic Algorithm
Population size = 400
Number of generations = 400
Mutation probability Pm=0.75
Crossover probability Pc =0.07
K=1.3
Length =32 characters
The best individual has:
F5= -0.000089
 N = 9
 M = 5
Groups:
 x a x x length =4 repeated =0
 5 11 20 25
 r c a b length =4 repeated =0
 13 14 24 30
 x a r c length =4 repeated =0
 12 16 18 31
 r c a length =3 repeated =0
 7 8 9
 c x x r length =4 repeated =0
 10 15 17 26
 x a r c length =4 repeated =1
 0 4 6 19
 r c a length =3 repeated =1
 21 22 23
 r c a length =3 repeated =1
 27 28 29
 r c a length =3 repeated =1
 1 2 3

Metasymbols:
M={x5a11x20x25, r13c14a24b30, x12a16r18c31, r7c 8a 9,
c10x15x17r26 }
Time used = 8 minutes and 5 seconds.
In figure 3 we show the metasymbols found in the
message �xrcaaxrrcacaxrcxaxrcxrcaaxrrcabc�

Figure 3. Metasymbols found in a message with 32
characters, M={x5a11x20x25, r13c14a24b30, x12a16r18c31,

r7c 8a 9, c10x15x17r26}

Case 1. The metric found in 11 seconds that the
metasymbol x0x2x3 was repeated twice and that
metasymbol y1w5 was the complement of the message.
In figure 1 we can easily identify the three groups in
which the message �xyxxxwxx� was divided.
In case 2, the metric is able to find that a pattern with no
contiguous symbols x, y and z is repeated three times
which is very good. Besides, a minimal of two
metasymbols were found and the length of each one is
not slant to the extreme values 1 and 16. The time
required for this result was approximately 2 minutes
which compared with the exhaustive search is too many
times lower. In figure 2 we can easily see how the
metasymbol x12y13z15 is repeated four times.
In case 3, the metric found a set of 5 metasymbols from
a partition of 9 groups, and that is very good. In figure 3
metasymbols can be easily identified by means of
triangles, squares, circles, rectangles and ellipsoids.
Groups weren�t drawn because they make less clear the
visualization. As we can see, metasymbols has no
contiguous symbols and theirs lengths aren�t slant to the
extreme values 1 and 32. The time required for this
result was approximately 8 minutes which is a very good
in comparison with the time required by the exhaustive
search.
So we can say, metric 5 has provided the best result in
comparison to the other metrics (1,2,3 and 4). Metrics
1,2,3 and 4 fails with simple strings while metric 5 has
been probed successfully with strings of 16 and 32
characters. Here we have shown a few results in order to
illustrate its performance.

7. Conclusions

Exhaustive search of metasymbols is not to be
recommended because of its computational complexity.
As an alternative to reduce the search time is possible to
use a genetic Algorithm and in particular a Vasconcelos
Genetic Algorithm where the measure of fitness can be
metric 5. In order to code a message decomposed in
metasymbols and compare the result with the original
Huffman coding we intend to test with messages of
larger length.
 It is very important to stress that the problem
we are attempting to solve has applications in various
fields. For example, it may be applied in cryptography,
large data bases matching, internet search engines,
automatic translation, etc.
 The analysis of exploration of the metrics
mentioned above does not convey the inherent
difficulty which is found in the problem. Furthermore,
we intend to approach the problem with the aid of
alternative soft computing techniques, such as
multilayer backpropagation networks and support
vector machines. These tools will enable us to attempt a
classification of the groups of metasymbols to make our
search more efficient.

8. References

[1] Pierce, J. R., An Introduction to Information
Theory, 2nd Ed., Dover, 1980, 94-101.
[2] Shannon, C.E., A Mathematical Theory of
Communication, Bell Sys. Tech. J. 27 (1948), 379-423,
623-656.
[3] Hamming, R.W., Coding and Information Theory,
Prentice-Hall, 1980, p. 80-89.
[4] Shannon, C., op. cit., p. 7.
[5] Burrows M., and Wheeler, D. J., A block-sorting
lossless data compression algorithm, Digital Syst. Res.
Ctr., Palo Alto, CA, Tech. Rep. SRC 124, May 1994
[6] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K.
Wei. A locally adaptive data compression algorithm,
Communications of the ACM, Vol. 29, No. 4, April
1986, pp. 320�330
[7] Huffman, D. A.. A method for the construction of
minimum-redundancy codes. Proc. Inst. Radio Eng. 40,
9 (.), 1098�1101, Sept 1952.
[8] Nelson Mark, Jean Loup Gailly, The Data
Compression Book, Second Edition, M&T Books
Redwood City, CA (1995).
[9] Paturi, R., Rajasekaran, S., and Reif, J.H. (1989),
The Light Bulb Problem. In Second Work shop on
Computational Learning Theory.
[10] Venkatesan T. Chakaravarthy and Rajasekar
Krishnamurthy, The Problem of Context Sensitive

String Matching, Computer Science Department,
University of Wisconsin Madison, WI 53706, USA.
[11] Steven Prestwich, A Hybrid Local Search
Algorithm for Low Autocorrelation Binary Sequences,
Technical Report, Department of Computer Science,
National University of Ireland at Cork.
[12] F.C. Auluck and D.S. Kothari, Statistical mechanics
and the partitions of numbers, Proceedings of the
Cambridge Philosophical Society 42 (1946).
[13] Kuri, A., A Comprehensive Approach to Genetic
Algorithms in Optimization and Learning, Editorial
Politécnico, 1999.

