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How to make large self-organizing maps for nonvectorial data
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Abstract

The self-organizing map (SOM) represents an open set of input samples by a topologically organized, finite set of models. In this paper, a

new version of the SOM is used for the clustering, organization, and visualization of a large database of symbol sequences (viz. protein

sequences). This method combines two principles: the batch computing version of the SOM, and computation of the generalized median of

symbol strings. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The traditional nonlinear projection method for the

ordered display of general data items between which an

arbitrary similarity measure has been defined is the multi-

dimensional scaling, MDS (Kruskal & Wish, 1978) with its

variations. In this paper we point out that unlike in the MDS

and most clustering methods, each original sample need not

be represented separately, if the samples are approximated

by a much smaller set of topologically ordered model

representations. The self-organizing map (SOM) (Kohonen,

1982, 1990, 1995; Kohonen, Oja, Simula, Visa, & Kangas,

1996) is a nonlinear projection method, too, which uses such

models and has been applied to a diversity of problems. In

this paper it is shown how an extension of the SOM

(Kohonen, 1996) can be used for the clustering, organiz-

ation, and visualization of a large database of nonvectorial

items, viz. protein sequences.

Usually the SOMs are defined in metric vector spaces.

The new method suggested by one of the authors (Kohonen,

1996) allows the construction of the SOM for items with an

arbitrary similarity measure defined between them, and thus

for nonvectorial data items, too. In order to define an

ordered projection, like in the MDS, it will be sufficient to

compare the pairwise distances or similarities between the

items. For the practical example in the present work the

FASTA method (Pearson & Lipman, 1988) was used for

the computation of similarities between protein sequences,

picked up from the SWISS-PROT database (Bairoch &

Apweiler, 1999) publicly available via the Internet.1

2. The self-organizing map for nonvectorial data sets

In its original form the SOM is a nonlinear projection

method that maps a high-dimensional metric vector space,

or actually only the manifold in which the vectorial samples

are really located, onto a two-dimensional regular grid in an

orderly fashion (Kohonen, 1982, 1995). A model represent-

ing a local subset of the data in the manifold is associated

with each grid point. In an unsupervised learning process

the models on the map will be tuned to the input data. This is

implemented by competitive learning and the use of a

topological neighborhood within which the models are

adapted. The following two steps are repeated for each input

item in the data set:

1. Find the best-matching model using the chosen similarity

measure.

2. Update this model and the models belonging to its

topological neighborhood in the map grid towards the

prevailing input.

Let the grid points be indexed by i, and let c be the index

of the model (‘winner’) that matches best with the

prevailing input item. The updating at step 2 is controlled

in such a way that the rate of the updating of the neighboring

models shall be proportional to the neighborhood function

hciðtÞ; which is a function of the input sample, and of time,

too (cf. Fig. 1).

The above two steps, in a general way, define an iterative

regression-type process. Before its application, the models

have to be initialized properly. It is characteristic of the

SOM processes that the initial models can even be selected

randomly. The mathematical proof of this result is,

however, very complicated even in the simplest cases
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(Cottrell, Fort, & Pagès, 1997) and cannot be presented

here.

It has turned out in practice that the convergence of the

models to their final, stationary values proceeds signifi-

cantly faster if, instead of completely random choice for

their initial values, the models are even roughly ordered. For

instance, if the input items and the models were Euclidean

vectors, as in most applications, one can select the models

as a regular array of values picked up from the two-

dimensional hyperplane spanned by the two largest

principal components of input.

In this paper we shall only make use of the batch-learning

version of the SOM (Kohonen, 1995). Assume first that a

finite set of vectorial training samples {xð jÞ} is available,

and the models associated with the grid nodes are called mi:

The first task is to find the best-matching model mc for each

xð jÞ according to

cðxð jÞÞ ¼ arg min
i

{d½xð jÞ;mi�}: ð1Þ

The new updated model is then

mi ¼

X

j

hcðxð jÞÞ;ixð jÞ

X

j

hcðxð jÞÞ;i

: ð2Þ

However, the SOM principle is not restricted to metric

vector spaces. It has been pointed out (Kohonen, 1996) that

any set of items, for which a similarity or distance measure

between its elements is definable, can be mapped on the

SOM grid in an orderly fashion. This is made possible by

the following principle, which combines the concept of the

generalized median of a set (Kohonen, 1985, 1995) with the

batch computation of the SOM.

Assume a fundamental set S of any kind of items xðiÞ

and let d½xðiÞ; xð jÞ� be some distance measure between xðiÞ

and xð jÞ [ S: The generalized median m over S is defined

as the item that minimizes the objective function

D ¼
X

xðiÞ[S

d½xðiÞ;m�: ð3Þ

In this work, m is restricted to being an element of S.

Notice that if the input samples had been real scalars and

the distance measure were the absolute value of their

difference, it is easy to show that the generalized median

coincides with the arithmetic median. On the other hand, if

the input samples were real vectors, if the distance measure

were Euclidean, and if the item with the smallest sum of the

squares of distances from the other items were sought, the

generalized median would coincide with the arithmetic

mean of the xðiÞ [ S:
Let us now concentrate on the special SOM that is able to

map nonvectorial items. Consider Fig. 2 in which a regular

grid is shown, with some general model mc· · ·mp associated

with each grid node. Assume that a sublist that contains a

subset of input items xðiÞ can be associated with each model.

Each of the input items xð1Þ; xð2Þ;… is compared with all the

models and listed under that one that has the smallest

distance from the respective input item. The xð1Þ; xð2Þ;…

will thus be distributed under the closest models.

Define for each model, say mi; a neighborhood set Ni (the

set of models located within a certain radius from the node i

in the grid). Consider the union of all the sublists within Ni

(shown by the set line in Fig. 2). The generalized median of

Ni is defined to be identical with the input sample in the

union of the sublists in Ni that has the smallest sum of

distances from all the other samples of Ni, see Eq. (3).

In forming the sum of distances, the contents of the

sublists within Ni can be weighted by the neighborhood

function hciðtÞ:
For each Ni in Fig. 2, i ¼ c; d;…; p the generalized

median is now determined, and the old models mc· · ·mp are

replaced by the respective generalized medians, in a

concurrent operation.

After this replacement, the original models have now

been changed, and if the same input samples were compared

Nomenclature

c; cðxÞ index of the best-matching unit for input x

dð·; ·Þ distance measure

hciðtÞ; hcðxð jÞÞ;i neighborhood function

i; j indices

I the set of map unit indices

m generalized median over set S
mi general model associated with map unit i

mi model vector of map unit i

t time index

x; xðiÞ general input item

x; xðiÞ input vector Fig. 1. A Gaussian neighborhood function on the rectangular SOM grid

around the winner node. A model representing the local input manifold is

associated with each grid point. The neighborhood function determines the

learning rates of the models.
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with them, they would be redistributed in a different way in

the sublists. Eventually, however, in a finite number of

iterations of this type the process will converge, after which

the models approximate the input samples in an orderly

fashion, because each model then coincides with the

generalized median of the input items mapped into its

neighborhood.

It is not yet mathematically proven that the above

process converges, at least into a unique equilibrium. In

practice, convergence means that the lists will not be

changed any longer in further iterations, and this, of

course, can be observed. However, there may exist

alternative states into which the map may converge, and

only one of them is the global optimum. This same

problem is associated with most ‘neural networks’. A

proof of the ‘batch map’ process has only been presented

for vectorial items (Cheng, 1997).

Comment 1. Several criteria for the evaluation of the

degree of ordering have been developed (Kaski & Lagus,

1996; Kiviluoto, 1996; Villmann, Der, & Martinetz, 1994;

Zrehen, 1993).

Comment 2. Like in the traditional SOM for vectorial

items (Kohonen, 1995), the radius of the neighborhood set

Ni at the beginning of the process may be selected as fairly

large and put to shrink monotonically in further iterations.

The optimal speed of shrinking should be determined

experimentally.

Comment 3. Since the generalized medians are discrete

entities, some models on the map may be identical, which

will result in ties between the best-matching models. A

simple solution to make the winner unique is to define the

winner as that model, for which the sum of the distances of

the input to all models in a small neighborhood of the

winner candidate is smallest, cf. Fig. 3.

3. Example: the SOM of protein sequences

To exemplify the method presented in this paper and

some computational tricks that accelerate the convergence

of very large nonvectorial SOMs, we applied the algorithm

described in Section 2 to a very large database of 77 977

protein sequences, obtained from the SWISS-PROT data-

base, release 37 (Bairoch & Apweiler, 1999; Somervuo &

Kohonen, 2000).

In order to construct a mapping of the protein sequences,

some kind of similarity measure for them had to be defined

first. For arbitrary amino acid sequences it is difficult to

define the ‘best’ measure since it depends on, for instance,

whether global or local relations of the sequences are of

interest. However, if the database is representative and the

data are distributed densely enough in the ‘sequence space’,

it may be argued (Pearson, 1999; Pearson & Lipman, 1988)

that the method for finding close evolutionary connections

and similarities is adequate, since all items in the database

can then be connected to each other by the chains of local

connections and close similarities. Similarities between

remote sequences can be tracked by means of the chains of

the closely related sequences in the sequence space. For

protein sequences, e.g. the Smith–Waterman (Smith and

Waterman, 1981), BLAST (Altschul, Gish, Miller, Myers,

& Lipman, 1990), or FASTA (Pearson & Lipman, 1988)

methods have been used. In the present work, the FASTA

method was chosen.

In the earlier works where the SOM has been used for the

clustering of protein sequences, the data have been

converted into vectorial representations. The sequences

were converted into 400-dimensional dipeptide histogram

vectors by Ferrán and Ferrara (1991). Similar amino acids

were grouped together before computing the histogram

vectors by Ferrán, Pflugfelder, and Ferrara (1994). The

aligned sequences were converted into vectors through

fractal encoding by Hanke and Reich (1996). Each position

of the sequence was represented as a 20-dimensional vector

with each vector component corresponding to one amino

acid symbol by Andrade, Casari, Sander, and Valencia

(1997). The whole sequence was then converted into an L-

by-20-dimensional vector, where L was the length of the

global alignment of all sequences.

The method described in Section 2 allows the organiz-

ation of nonvectorial data items according to their true

similarities without any approximative vector-encoding.

As our experiment serves mainly as a demonstration of

the new method, we decided to use a hexagonal 30-by-20-

unit SOM, but there are no restrictions in using a larger map.

We have observed experimentally that the con-

vergence of the nonvectorial SOM algorithm is significantly

faster and safer, if the initial models are already two-

dimensionally ordered, roughly at least. We found that the

method in which the protein sequences were ordered

according to the similarity of their dipeptide histograms

(Ferrán & Ferrara, 1991; Ferrán et al., 1994) is useful for the

Fig. 2. Illustration of the SOM algorithm for nonvectorial data. Each of the

input items xð1Þ; xð2Þ;… is copied into the sublist under that model that has

the smallest distance from the respective input item. After that, the

generalized median �xi in each neighborhood set is determined, and the old

value, say mi; is replaced by �xi: This cycle is repeated from the beginning as

many times as the models are not changed any longer.
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tentative definition of a rough initial order to the SOM.

Then, however, extra auxiliary model vectors had to be

introduced and associated with the nodes. The initial

ordering of the vectorial models in this auxiliary SOM

proceeded in the traditional way in our experiment. Each

map node was first provided with a 400-dimensional model

vector, each component of which was initialized with a

random value between zero and unity, whereafter the

vectors were normalized to unit length. Training was made

by the 400-dimensional dipeptide histograms using 30 batch

cycles. A Gaussian neighborhood kernel, the standard

deviation of which decreased linearly from 30 to 1 during

training, was used.

Next the nodes were labeled by those protein sequences

that represented the medians in the sublists under the

respective nodes (cf. Fig. 2). When this labeling was ready,

the vectorial parts of the models could be abandoned, and

the ordering could be continued by the method described in

Section 2.

In the subsequent phases of learning, the true protein

sequences were used as inputs as described in Section 2 and

the winner nodes were determined by the FASTA method.

The source code for the FASTA computation was extracted

from the FASTA program package, version 3.0 (Pearson,

1999). The parameter ktup was set to 2, the amino acid

substitution scores were taken from the BLOSUM50 matrix,

and the final optimized score for the sequence similarity was

computed by dynamic programming.

The symbol-SOM was trained for 20 batch cycles, using

the neighborhood radius of 1. (Since the SOM was already

roughly ordered, there was no need to use a shrinking kernel

any longer.) Since the sequence similarities instead of their

distances were actually computed, for the ‘median’ we had

to take that sequence in the union of the neighboring sublists

that had the largest (instead of smallest) sum of similarity

values with respect to all the other sequences in the

neighboring lists. The Gaussian neighborhood function was

applied to the weighting of the similarities.

It would have presented a very high computing load to

the algorithm if all the 77 977 protein sequences had been

used as inputs at each batch computation cycle. The

computing load could be reduced to less than 10%, without

Fig. 3. Tie-breaks in the winner determination. In case two (or more) map units have the same distance to the input item, the winner is defined to be that model

for which the sum of the distances of the input to all models in a small neighborhood around the winner candidate is minimum. The size of the neighborhood is

increased until one of the map units becomes an unambiguous winner.
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essentially deteriorating the (statistical) accuracy of the

batch computation, by randomly picking up 6000

sample sequences from the 77 977 ones for each batch

cycle. After 20 such sampled training cycles, one final

training cycle was carried out using all the available

sequences as the inputs.

The resulting SOM is shown in Fig. 4. The map nodes

that have been labeled according to the identifiers of the

Fig. 4. A 30-by-20-unit hexagonal SOM grid. The SOM was constructed using all the 77 977 protein sequences of the SWISS-PROT release 37. Each node

contains a prototype sequence and a list of data sequences. The labels on the map nodes are the SWISS-PROT identifiers (Bairoch & Apweiler, 1999) of the

prototype sequences. The upper label in each map node is the mnemonic of the protein name and the lower label is the mnemonic of the species name. The

similarities of the neighboring prototype sequences on the map are indicated by shades of gray. The light shades indicate a high degree of similarity, and the

dark shades a low degree of similarity, respectively. Light areas on the map reveal large clusters of similar sequences.

Fig. 5. Clustering of 77 977 protein sequences using a 30-by-20 unit SOM. The prototype sequences of the map nodes are the same as in Fig. 4. Each node is

labeled by majority voting of the sequences having that node as their best-matching unit. The labels are the PROSITE classes (Hofmann et al., 1999) of the

sequences.
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final prototypes resulted in the ‘median map’ method. Now

consider that the xðiÞ are generally clustered; then the

probability for the occurrence of input values between the

clusters is small, and there is no need to allocate space on

the SOM for the data space between the clusters. In the

SOM, the clusters will automatically be mapped closely

nearby. In order to distinguish the clusters in the display and

to demarcate their borders, one may use, e.g. special

coloring methods such as the U-matrix (Kraaijveld, Mao, &

Jain, 1992, 1995; Ultsch & Siemon, 1989), where the

clusters are indicated by light shades and the borders with

darker shades, respectively. In Fig. 4 the background areas

between the models are shaded.

Once the SOM has been trained and is ordered, it is very

fast to compute the projection of any new sequence on it.

This requires only as many sequence comparisons as there

are prototype sequences on the map. In the current work, the

SOM contained 600 prototype sequences. Thus the work

Fig. 6. Projections of the 32 most frequent PROSITE classes of the SWISS-PROT database on the SOM. Each subfigure represents the distribution of one class.

The prototype sequences of the map nodes are the same as in Fig. 4. The shades of gray indicate the number of protein sequences belonging to the given class in

each map node. The maximum value (darkest shade of gray) is scaled to unity in each subfigure. The total number of the sequences in each class is shown in the

parentheses after the PROSITE name.
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needed for classifying the new sequence into a prototype

class is considerably lighter than comparison with all the

77 977 sequences of the whole database.

As it may be desirable to characterize the quality of the

mapping produced by the nonvectorial SOM, we show the

clustering of some known protein families on it.

For the map shown in Fig. 4, another labeling was carried

out by listing all data sequences under the best-matching

nodes and then performing a majority voting for each list

according to the PROSITE classes, release 15 (Hofmann,

Bucher, Falquet, & Bairoch, 1999) of the sequences. This

result is shown in Fig. 5. Since the PROSITE database did

not give any class for 37 743 sequences of the SWISS-

PROT database, the PROSITE label of the node does not

necessarily characterize all sequences of the node.

Those classes whose members are strongly similar have

been mapped to a small area on the map, while some other

classes are spread out more. Actins and rubisco-large are

examples of the classes which form sharp areas on the map.

Globin is a large family which is composed of subfamilies.

The globin sequences are mostly mapped on the top-left

corner of the SOM. Hemoglobin beta chains are represented

on the corner, hemoglobin alpha chains are in the cluster

below catalases, and myoglobins are located below

hemoglobin alpha chains. One sharp cluster on top of the

map consists of efactor-gtp sequences. Between globins and

efactor-gtp there is a cluster of the hsp70 family. Tubulins

are mapped to two closely located areas, one of which is

characterized by alpha subunits and another by beta

subunits, respectively.

Since there are altogether 1352 classes in the PROSITE

database, not all of them can be discussed in detail. But a

general idea of the capability of the SOM can be gained by

investigating the projections of the most frequent classes.

Therefore the PROSITE classes were sorted according to

their frequency in the SWISS-PROT database. The 32 most

frequent classes were then projected on the SOM by finding

the best-matching unit of each sequence belonging to the

given class. The resulting class distributions are shown in

Fig. 6.

In the visualization of the class distributions, some

PROSITE classes were combined. For example, the actins

class consists of 249 sequences of the family actins_act_

like, 232 sequences of actins_2, and 227 sequences of

actins_1. Trypsin_ser and trypsin_his were combined to the

single trypsin class. Thiol_protease_asn, thiol_protease_his,

and thiol_protease_ser were combined to the single

thiol_protease class. Cytochrome_b class in the figure

consists of both cytochrome_b_qo and cytochrome_b_

heme. The distribution of protein_kinase_atp (1040

sequences) is not shown, because it was identical with the

distribution of the protein_kinase_dom (1093 sequences).

Analyzing the cluster contents according to known

protein families can give information about the specificity

of the prototype sequences, like in the organization of the

database performed on the basis of the sequence similarities.

The classification of the sequences according to the

PROSITE classes, however, may also include structural

information about the protein molecules. At any rate, many

PROSITE classes were mapped to small and sharp areas on

the SOM display.

4. Concluding remarks

Contrasted with the earlier works on SOMs, the principle

used in this work makes it possible to apply any similarity

measure for the mapped items. The resulting clustering and

ordering of the data is expected to reflect the properties of

the chosen similarity measure. The present example, where

the similarities between protein sequences were computed

by the FASTA method, is a two-dimensional map where

similar sequences are mapped to the same node or

neighboring nodes, and the structures of the clusters thereby

formed are clearly visible.

An advantage of the SOM, compared with some other

projection methods, is that the basic form of the algorithm is

very simple, straightforward to implement, and fast to

compute. The SOM can therefore be used as a data mining

and visualization tool for a wide variety of data sets, for

which a similarity or distance measure between its elements

can be defined.
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