
A Statistical Genetic Algorithm

Angel Kuri M.
akm@pollux.cic.ipn.mx

Centro de Investigación en Computación
Instituto Politécnico Nacional

Zacatenco
México 07738, D.F.

Abstract

A Genetic Algorithm which works by
statistically mimicking the genetic
operations of a traditional genetic
algorithm is presented. This Statistical
Genetic Algorithm (STA) is tested vs. a
set of 8 "difficult" functions and is
shown to compare favorably with its
more traditional non-statistical
counterparts. A qualitative description of
the algorithm is presented which
conceptually explains its behavior.

Keywords
Genetic Algorithm, genetic operators, statistical,
optimization.

1. Introduction
In the past few years the evolutionary computation
community and, in particular, the Genetic Algorithm (GA)
community, has paid much attention to the problem of
determining the best ways to achieve optimization of
complex numerical functions. Special attention has been
given to those functions which seem to be difficult for the
GA to optimize (GA-hard) and the reasons why this is so
(see, for instance, [1], [2], [3]). In this paper we propose
and analyze yet another variation of a GA. This particular
form of a GA has been suggested by Enrique Díaz Infante
[4] and takes advantage of the fact that the average
behavior of traditional Simple Genetic Algorithm (SGA)
may be achieved without actually applying the genetic
typical operators (selection, crossover and mutation) but,
rather, statistically simulating their behavior. In order to
test the past assertion we defined four variations of the
proposed STA: 1) A statistical GA with 1-point crossover
(the counterpart of the SGA) which we denote by STA1P;
2) A statistical GA with uniform crossover (the counterpart
of the SGA with uniform crossover) which we denote by
STAUN; 3) An elitist statistical GA with 1-point crossover
(the counterpart of an elitist SGA) which we denote by
STE1P; 4) An elitist statistical GA with uniform crossover
(the counterpart of an elitist SGA with uniform crossover)

which we denote by STEUN. In part 2 of the paper we
define what we mean by these 4 variations. In part 3 we
describe 8 functions we have chosen to test the behavior
of the 4 variations. In part 4 we describe the results of a
set of runs designed to establish the performance of the
four variations relative to their more traditional
counterparts. Finally, in part 5 we offer some conclusions
and point to further lines of research.

2. A Statistical GA

2.1. Conventions
In what follows, the following applies:

i) Each run consists ofG generations.
ii) Each population is assumed to consist ofN

individuals.
iii) Each of any individual’s genome is assumed

binary.
iv) The length of the genome isl.
v) Each of the genomes represents anm-

dimensional real vector .x (x1, ... ,xm)
vi) Each real numberxi has a fixed point format

of the formS/I/D whereS is the sign bit,I is a set of bits
representing the integer part of the number andD is a set
of bits representing the decimal part of the number. For
instance, if and the weighted binaryI 2 D 5
string 11101000represents the number-3.25. A genome
is a concatenated collection ofm such numbers.

vii) Every numberxi is encoded in Gray [5].

2.2. Algorithm STAUN
a) Set .i ← 0
b) Generate thei-th population .Πi

c) Obtain the fitness (Fj) of each of the
individuals ().1 ≤ j ≤ N

Fj is calculated from:
(2.a)Fj fj Κ

where
fj is the original function evaluated for thej-th

genome and .Κ 1
N j

fj min
j

(fj)

d) Obtain the relative fitness .Φj

Fj

j

Fj

e) Every bit k of the population’s genome is
assigned a probabilityPk as follows:

(2.b)Pk
j

Φj bjk k 1, ... ,l

wherebjk denotes thek-th bit of the j-th individual. Notice
that Pk actually represents the weighted expected number
of times that bitk will take the value1 as a function of
the fitness of thei-th population.

f) RepeatN times:
i) Set .j ←1

ii) Generate a uniformly distributed
number .0 < ρj ,ρk ≤ 1

iii) If ρj > 0.005

bj







0 if ρk > Pj

1 if ρk ≤ Pj

otherwise

bj







0 if ρk ≤ Pj

1 if ρk > Pj

iv) Set .j ← j 1
v) If j < l go to (ii)

vi) An individual’s genome is composed
by concatenating thel bits from the procedure above.

g) Set .i ← i 1
h) If i > G end algorithm; otherwise proceed with

step (c).

2.3. Qualitative Description
Algorithm STAUN starts by generating population’sΠ0

individuals randomly. That is, each of thel bits in every
individual’s genome is assigned the value0 or 1 randomly
with P(0) = P(1) = 0.5. The fitness of thej-th individual
is calculated from the objective function and normalized as
per (2.a) to ensure a positive fitness. Given this, it is easy
to determine j’s relative fitness which, immediately,
induces a partial ordering in the population according to
the value of . Once this is done, we are able toΦj

determine what may be aptly called aprobabilistic genome
(PG). In this genome, the probability that thej-th bit of the
genome attains a value of1 is derived from equation (2.b).
In actuality what we are doing is defining a set of
probability distribution functions (pdfs), 1 for each of the
l bits in the genome. These pdfs are Bernoulli distributed
and, initially, may have rather large variances (). Givenσ2

the above, every new population is generated by sampling
from the j-th distribution to compose its newN
individuals. Thei-th population consists of individuals that
respond to the average behavior of the .(i 1) th
However, because of statistical fluctuations, neighboring
regions of the problem’s landscape are constantly being
explored. Since thei-th SG is derived from the new
fitnesses, the(i+1)-st population is closer to the solution.
A new set ofl probability distribution functions replaces

the older one. Every new population is also Bernoulli
distributed but with an increasingly small although thisσ
process is, in general, non-monotonic. Eventually (one
hopes) the pdfs of the final population will have a
Bernoulli distribution with , implying convergence.σ ≈ 0
In a strict sense, the STA avoids the need to include
explicit mutation provisions. However, preliminary tests
showed that premature convergence is avoided if such
provisions are made. From the point of view of encoding,
the whole process may be seen as a search for a crisp
encoding of the solution with a set of fuzzy bits. The bits
of the initial generations are quite fuzzy and each bit is
progressively de-fuzzyfied in consecutive generations. In
the case of an STA the problem of GA-hardness translates
to the problem of not targeting to intermediate pdfs with
small s.σ

2.3.1. Statistical Operators
Although the STAUN algorithm does not explicitly include
any of the so-called genetic operators, there is an
equivalence between the proposed algorithm’s workings
and such operators. In fact, we have defined 4 variations
(to be discussed in the sequel) which depend on this
equivalence.

2.3.1.1. Selection
In an SGA individuals are selected proportionally

according to the quotient . In the STAUN proportional
fi

f
selection stems from the way the distributions for the bits
of the SG are calculated. Proportionality is tacit in the fact
that better individuals collaborate with higher weight in the
bits’ distributions of the SG.

2.3.1.2. Crossover
In an SGA crossover is of the "1-point" sort, meaning that
1 point in the individual’s genome is selected randomly
and the two segments defined by this locus are
interchanged. Uniform crossover (where a set ofl/2 bits
are randomly selected to be interchanged) yields a
different behavior of the algorithm and the STAUN
algorithm does follow this behavior rather than that of the
1-point sort (hence the nomenclature: STAUN). This may
be clearly understood since every bit’s statistical
distribution is sampled with the same probability.

2.3.1.3. Mutation
In an SGA the exploration new areas of the problem’s
landscape is achieved via the purposeful obliteration of
randomly selected bits. This happens with, typically, low
probability. In STAUN the strategy adopted (outlined in
step (f) of the algorithm) to achieve this effect is to adopt
the exact dual of the SG’s distribution with a very low
probability. We have chosenPm = 0.005.

2.3.2 Variations
In order to test the operation of the STA we considered 4
variations of a traditional GA: a) The SGA as defined by
Holland [6] (denoted as SGA1P); b) An SGA where 1-

point crossover is replaced by uniform crossover (denoted
as SGAUN); c) An SGA where the best individual in the
i-th generation is preserved. Thiselitist GA is denoted as
SGE1P; d) An SGA with elitism and uniform crossover
(denoted as SGEUN). We also considered their statistical
counterparts which we denote as a) STA1P, b) STAUN, c)
STE1P and d) STEUN. The STA variations work as
described above with the obvious preservation of the best
individual in STE1P and STEUN. The 1-point crossover
operator was implemented in STA1P and STE1P by
assigning a weight to thej-th bit in the SG according to
wj=(l-j+1)/l . This is consistent with the fact that in 1-point
crossover the bits are more likely to be interchanged if
they are close to the rightmost bit in the genome.

3. Objective Functions
8 problems, along with their objective functions were
defined to test the behavior of all 8 variations described
above. In what follows we briefly describe the problems
and make some light remarks.

Problem 1:

Maximize
f x1 sin (32x1) cos(11x2)

Subject to:
0 ≤ x1 ≤ π
0 ≤ x2 ≤ π

Solution:
f (x1,x2) ≈ 4.0930

x1 ≈ 3.0935
x2 ≈ 2.1420

Problem 2:

Maximize
f (x1,x2) (x1 5)2 (x2 3)2

Solution:
f (x1,x2) 0

x1 5.0
x2 3.0

Problem 3:

Minimize
f (x1,x2) x 2

1 x 2
2 x1x2 2x1 2x2 13

Subject to:

r1(x1,x2) x 2
1 x 2

2 x1 x2 8 ≥ 0
r2(x1,x2) x1x2 x1 x2 5 ≥ 0

Solution:
f (x1,x2) ≈ 0.0009879

x1 ≈ 1.0005490
x2 ≈ 1.9996705

and

r1(1.0005490,1.9996705)≈ 10 8

r2(1.0005490,1.9996705)≈ 10 4

Problem 4:

Minimize

f (x1,x2) 3x 2
1 2 sin(x1)cos(x2) 2 x 2

2

cos(x1) sin(2x2) 27.5
Subject to:

r1(x1,x2) 3x 2
1 2sin(x1)cos(x2) 10.2 ≥ 0

r2(x1,x2) 2x 2
2 cos(x1)sin(2x2) 17.3 ≥ 0

Solution:
f (x1,x2) ≈ 1.0037418244

x1 ≈ 1.9981788993
x2 ≈ 2.9264232963

and

r1(1.9981788993,2.9264232963)≈ 10 5

r2(1.9981788993,2.9264232963)≈ 10 5

Remarks. Problems 3 and 4 are an attempt to find a
general (evolutionary) algorithm for the solution of
simultaneous non-linear equations. The method is simple.
We obtain a linear combination of then equations to be
solved (in this casen = 2). Here we simply added the
equations. Then we establish the need to minimize the
composite function thusly obtained and impose the need to
satisfy the requirement that the original equations are .≥ 0
In trying to minimize de composite function without
violating the constraints, such constraints are also
minimized and the original problem is solved. Notice that
we could have equally well defined the problem in terms
of maximization. Then we would have imposed the
condition that the constraints remain .≤ 0

Problem 5:

Minimize
f (x1,x2) 100(x2 x 2

1)2 (1 x1)2

Subject to:

x1 x 2
2 ≥ 0

x 2
1 x2 ≥ 0
1
2

≤ x1 ≤ 1
2

1 ≤ x2 ≤ 1
Solution:

f (x1,x2) ≈ 0.2500000
x1 ≈ 0.5000049
x2 ≈ 0.2500051

Problem 6:

Minimize
f (x1,x2) x1 x2

Subject to:

x2 ≤ 2x 4
1 8x 3

1 8x 2
1 2

x2 ≤ 4x 4
1 32x 3

1 88x 2
1 96x1 36

0 ≤ x1 ≤ 3
0 ≤ x2 ≤ 4

Solution:
f (x1,x2) ≈ 5.466036

x1 ≈ 2.339889
x2 ≈ 3.126146

Problem 7:

Minimize
f (x1,x2) (x1 10)3 (x2 20)3

Subject to:

(x1 5)2 (x2 5)2 100 ≥ 0

(x1 6)2 (x2 5)2 82.81≥ 0
13 ≤ x1 ≤ 100
0 ≤ x2 ≤ 100

Solution:
f (x1,x2) ≈ 6961.668579

x1 ≈ 14.095059
x2 ≈ 0.843090

Problem 8:

Minimize

f (x1) ex1 1
2 










1

1 x 2
1

1
2

Solution:

f (x1) ≈ 10 6

x1 ≈ 3×10 8

4. Experiments
We conducted a set of experiments as follows:

a) Every one of the 8 variations was run 5 times
with different seeds for the random number generator for
each of the 8 objective functions. Thus, a total of 320
simulations were run.

b) In all cases we setN = 50 andG = 50.
c) In problems 1, 3, 4, 5, 6 and 7 (which are

constrained) we used a death penalty for those individuals
not complying with the constraints. Fitness of an
individual is determined from

(4.a)fi (x)







fi (x) if feasible

K
s

i 1









K
m

otherwise

whereK = , s = number of satisfied constraints.109

d) The behavior of the algorithms was registered
for each of the 50 generations. We calculated the relative
error () for thei-th generation fromεR

(εR)i

max besti , Best min besti , Best

Best
(4.b)

wherebesti is the best individual in generationi andBest
is the known solution.

e) The value ofBestwas determined by running
an eclectic [7] GA for an appropriate number of
generations.

4.1. Results
In the following figures we show the results of the
conducted experiments. The have been plotted every(εR)i

5 generations. The vertical axis corresponds to the error
while the horizontal axis corresponds to the generation.
F_Gxx denotes the generation. It should be notedxx th
that in these experiments rarely was the best value of the
objective function reached. This is of no importance
because it was not our intent to test the speed of
convergence but, rather, the relative performance between
the different variations. Also, this behavior is to be
expected when the number of allotted generations is as
small as in here (G = 50).

In figure 1 we show for SGE1P and STE1PεR

algorithms in problem 1. Both GAs reach an acceptableεR

but the standard GA outperforms the statistical GA in the
final stages of the algorithm.

Figure 1. Elitist 1-point Crossover for Problem 1.

In figure 2 we show the RE for SGEUN and
STEUN. Notice that SGEUN’s performance is worse than
SGE1P’s whereas STEUN is markedly better than STE1P.

Figure 2. Elitist Uniform Crossover for Problem 1.

In this case, the fact that starts from 30+% and 90% inεR

the statistical and standard cases respectively (in figure 1)

and from 50% and 70+% (in figure 2) denotes the fact that
there was, at least, one individual which did comply with
the constraints in the first 5 generations.

In figure 3 we show the RE for SGA1P and
STA1P in problem 7. Here for SGA1P starts at 100%εR

meaning that no feasible individuals were present during
the initial generations of the algorithm.

In figure 4 for SGAUN and STAUN for

Figure 3. Non-elitist 1-point Crossover for Problem 7.

εR

problem 7 is shown. In both figures 3 and 4 the statistical
variations outperform their traditional counterparts.

In order to have a more complete picture of the

Figure 4. Non-elitist Uniform Crossover for Problem 7.

actual behavior of the 8 variations we averaged the results
for all eight problems. In the next 4 figures (5, 6, 7 and 8)
we show the averaged relative error grouped by variation:
a) Non-elitist/1-point, b) Non-elitist/uniform, c) Elitist/1-
point and d) Elitist/uniform.

With the exception of the elitist algorithms with
1-point crossover, all the statistical variations yielded
better behaviors than their counterparts.

Finally, in figure 9 we show the average for

FFiigguurree 55.. NNoonn--eelli ittiisstt 11--ppooiinntt AAvveerraaggee RReellaattiivvee EErrrroorr..

εR

all 8 variations we explored.

Figure 6. Non-elitist Uniform Relative Error.

Figure 7. Elitist 1-point Relative Error.

Figure 8. Elitist Uniform Average Error

Figure 9. Average Error for All Problems.

The variations, ordered by their performance from
worst to best were as follows: 1) SGA1P, 2) SGAUN, 3)
STA1P, 4) SGEUN, 5) STE1P, 6) SGE1P, 7) STEUN, 8)
STAUN.

5. Conclusions
As expected from previous theoretical results [8], uniform
crossover is superior to 1-point crossover in general. Also
expected [9] was the fact that, in all cases except for the
best overall performer, elitist variations were superior to
their non-elitist counterparts. Interestingly, however,
although our initial intuition was that standard variations
would have similar behavior to their statistical counterparts
this turned out not to be so. Only in the case of elitist 1-
point crossover was the statistical variation worse.
However, even this may be attributed to random
fluctuations and to the short number of generations.

Why did the statistical GAs turn out to be
superior? From the qualitative analysis it would seem that
the STA does not easily get trapped in undesired pdfs with
small . Additionally one may speculate that the STA isσ
less sensitive to misleading schemas which are known to
be responsible of deceptive problems because of the
probabilistic genome’s "fuzzy" nature. A similar
consideration may lead us to believe that the STA will
also be impervious to spurious correlation, another well
known problem [10] with traditional GAs.

Further research should be devoted to testing
these issues plus the one related with the rate of
convergence for largerGs. If the above considerations turn
out to be confirmed then STAs have another advantage
over traditional GAs: they are more efficient in terms of
computational demands. This is obvious from the fact that
actual selection and crossover are never performed. In the
actual simulations STAs were at least twice as fast as their
standard counterparts.

References

[1] Mitchell, M., and Forrest, S. "What makes a Problem
Hard for a Genetic Algorithm? Some Anomalous Results
and Their Explanation", Machine Learning,13:285-319,
1993.
[2] Goldberg, D.E., "Simple Genetic Algorithms and the
Minimal Deceptive Problem". In L.D. Davis (Ed.), Genetic
Algorithms and Simulated Annealing. Research Notes in
Artificial Intelligence. Los Altos, CA; Morgan Kaufmann,
1987.
[3] Mitchell, M., Forrest, S., and Holland, J. "The Royal
Road for genetic algorithms: Fitness Landscapes and GA
Performance". In F.J. Varela and P. Bourgine, eds.,
Toward a practice of autonomous Systems: Proceedings of
the First European Conference on Artificial Life, MIT
Press, 1992.
[4] Enrique Díaz Infante, personal communication, March
11, 1999.
[5] Hamming, R., "Introduction to Coding and Information
Theory", Prentice-Hall, 1980.
[6] Holland, J. "Adaptation in Natural and Artificial
Systems", Ann Arbor, MI; University of Michigan Press,
1975.
[7] Kuri, A., "A Comprehensive Approach to Genetic
Algorithms in Optimization and Learning", Ed. Politécnica,
1999.
[8] Spears, W., De Jong, K., "An Analysis of Multi-Point
Crossover". In Rawlins, G., editor,Foundations of Genetic
Algorithms, pp. 301-315, Morgan Kauffman, 1991.
[9] Rudolph, G., "Convergence Analysis of Canonical
Genetic Algorithms", IEEE Transactions on Neural
Networks,5(1):96-101, January, 1994.
[10] Schaffer, J., Eshelman J., and Offut, D., "Spurious
Correlation and Premature Convergence in Genetic
Algorithms". In Rawlins, G., editor,Foundations of
Genetic Algorithms, pp. 102-112, Morgan Kauffman, 1991.

