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Abstract which we denote by STEUN. In part 2 of the paper we
define what we mean by these 4 variations. In part 3 we
A Genetic Algorithm which works by describe 8 functions we have chosen to test the behavior
statistically mimicking the genetic of the 4 variations. In part 4 we describe the results of a
operations of a traditional genetic set of runs designed to establish the performance of the
algorithm is presented. This Statistical four variations relative to their more traditional
Genetic Algorithm (STA) is tested vs. a counterparts. Finally, in part 5 we offer some conclusions
set of 8 "difficult" functions and is and point to further lines of research.
shown to compare favorably with its
more traditional non-statistical 2. A Statistical GA
counterparts. A qualitative description of
the algorithm is presented which 2.1. Conventions
conceptually explains its behavior. In what follows, the following applies:
i) Each run consists o generations.
Keywords i) Each population is assumed to consistNf
Genetic Algorithm, genetic operators, statistical, individuals.
optimization. iii) Each of any individual’s genome is assumed
binary.
1. Introduction iv) The length of the genome is
In the past few years the evolutionary computation v) Each of the genomes represents an
community and, in particular, the Genetic Algorithm (GA) dimensional real vectok = (X, ....X )
community, has paid much attention to the problem of vi) Each real numbex has a fixed point format

determining the best ways to achieve optimization ofof the formS/I/D whereSis the sign bit| is a set of bits
complex numerical functions. Special attention has beemepresenting the integer part of the number &nid a set
given to those functions which seem to be difficult for the of bits representing the decimal part of the number. For
GA to optimize (GA-hard) and the reasons why this is soinstance, if |I| = 2 and|D| =5 the weighted binary
(see, for instance, [1], [2], [3]). In this paper we proposestring 11101000represents the numbeB.25 A genome
and analyze yet another variation of a GA. This particularns a concatenated collection of such numbers.

form of a GA has been suggested by Enrique Diaz Infante vii) Every numberx is encoded in Gray [5].

[4] and takes advantage of the fact that the average

behavior of traditional Simple Genetic Algorithm (SGA) 2 2. Algorithm STAUN

may be achieved without actually applying the genetic a) Seti 0.

typical operators (selection, crossover and mutation) but, b) Generate théth populationl. .

rather, statistically simulating their behavior. In order to c) Obtain the fitness F) ofl each of the
test the past assertion we defined four variations of the’r‘ndividu

Is(l<j<sN).
proposed STA: 1) A statistical GA with 1-point crossover ?:éi é caJI cul at?ed from:
(the counterpart of the SGA) which we denote by STA1P; ! '
Fo=f+K (2.a)

2) A statistical GA with uniform crossover (the counterpart

of the SGA with uniform crossover) which we denote by Where o _ _
STAUN; 3) An elitist statistical GA with 1-point crossover fi is the original function evaluated for theth
(the counterpart_ _of an (_eli'Fist SGA)_whicr_\ we denote bygenome andK = iz £ | + |min(f)|

STE1P; 4) An elitist statistical GA with uniform crossover NG p

(the counterpart of an elitist SGA with uniform crossover)



. o F the older one. Every new population is also Bernoulli
d) Obtain the relative fitnes®p; = —JF . distributed but with an increasingly smail  although this
JZ i process is, in general, non-monotonic. Eventually (one
e) Every bitk of the population’s genome is hopes) the pdfs of the final population will have a
assigned a probabiliti?, as follows: Bernoulli distribution witha = 0 , implying convergence.
P-Yob k-1,..| (2.b) In a §trict sense, the_ _STA avoids the ne_ed_ to include
; explicit mutation provisions. However, preliminary tests
whereb, denotes thé-th bit of thej-th individual. Notice ~ showed that premature convergence is avoided if such
that P, actually represents the weighted expected numbeprovisions are made. From the point of view of encoding,
of times that bitk will take the valuel as a function of the whole process may be seen as a search for a crisp

the fitness of the-th population. encoding of the solution with a set of fuzzy bits. The bits
f) RepeatN times: of the initial generations are quite fuzzy and each bit is
i) Setj 1. progressively de-fuzzyfied in consecutive generations. In
i) Generate a uniformly distributed the case of an STA the problem of GA-hardness translates
number0 < p,p, < 1. to the problem of not targeting to intermediate pdfs with
i) If p; > 0.005 small o s.
%) if o> P 2.3.1. Statistical Operators
bj -u Although the STAUN algorithm does not explicitly include
) %‘ if p<P, any of the so-called genetic operators, there is an
otherwise equivalence between the proposed algorithm’s workings
%) if p < P and such operators. In fact, we have defined 4 variations
b =0 (to be discussed in the sequel) which depend on this
! % if p>P, equivalence.
iv) Setj —~j+1.

v) If j <1 go to (ii) 2.3.1.1. Selectipn_ . .
vi) An individual’s genome is composed In an SGA individuals are selected proportionally

by concatenating thebits from the procedure above. according to the quotient. . In the STAUN proportional

g) Seti ~i+1. f

h) If i > G end algorithm; otherwise proceed with sejection stems from the way the distributions for the bits
step (c). of the SG are calculated. Proportionality is tacit in the fact
O that better individuals collaborate with higher weight in the

I . bits’ distributions of the SG.
2.3. Qualitative Description

Algorithm STAUN starts by generatingl, population’s 2 3 1 2. Crossover

individuals randomly. That is, each of thevits in every  |n an SGA crossover is of the "1-point" sort, meaning that
individual's genome is assigned the valier 1 randomly 1 point in the individual’s genome is selected randomly
with P(0) = P(1) = 0.5 The fitness of thg-th individual ~ and the two segments defined by this locus are
is calculated from the objective function and normalized asnterchanged. Uniform crossover (where a set/®fbits

per (2.a) to ensure a positive fitness. Given this, it is easyre randomly selected to be interchanged) vyields a
to determinej’s relative fitness which, immediately, different behavior of the algorithm and the STAUN
induces a partial ordering in the population according toalgorithm does follow this behavior rather than that of the
the value of ® . Once this is done, we are able to1-point sort (hence the nomenclature: SIM). This may
determine what may be aptly callegheobabilistic genome be clearly understood since every bit's statistical
(PG). In this genome, the probability that ti# bit of the  distribution is sampled with the same probability.
genome attains a value bfis derived from equation (2.b).

In actuality what we are doing is defining a set of 2.3.1.3. Mutation

probability distribution functions (pdfs), 1 for each of the In an SGA the exploration new areas of the problem’s
| bits in the genome. These pdfs are Bernoulli distributedandscape is achieved via the purposeful obliteration of
and, initially, may have rather large varianceg (). Givenrandomly selected bits. This happens with, typically, low
the above, every new population is generated by samplingrobability. In STAUN the strategy adopted (outlined in
from the j-th distribution to compose its newN  step (f) of the algorithm) to achieve this effect is to adopt
individuals. The-th population consists of individuals that the exact dual of the SG’s distribution with a very low
respond to the average behavior of ti{¢-1)-th  .probability. We have chose,, = 0.005

However, because of statistical fluctuations, neighboring

regions of the problem’s landscape are constantly bein@.3.2 Variations

explored. Since tha-th SG is derived from the new In order to test the operation of the STA we considered 4
fitnesses, théi+1)-st population is closer to the solution. variations of a traditional GA: a) The SGA as defined by
A new set ofl probability distribution functions replaces Holland [6] (denoted as SGA1P); b) An SGA where 1-



point crossover is replaced by uniform crossover (denoteéroblem 4:
as SGAUN); c) An SGA where the best individual in the

i-th generation is preserved. Thaditist GA is denoted as Minimize
SGE1P; d) An SGA with elitism and uniform crossover
(denoted as SGEUN). We also considered their statistical
counterparts which we denote as a) STA1P, b) STAUN, C)Subject to:
STE1P and d) STEUN. The STA variations work as '
described above with the obvious preservation of the best I, (X,,%,)=3x; + 2sin(x,)cos(x,) - 10.2> 0
individual in STE1P and STEUN. The 1-point crossover rz(xl,xz)zzxz2 + cos(x,)sin(2x,) - 17.3= 0
operator was implemented in STA1P and STE1P byggution:

assigping a We-ig-ht to thjeth bit _in the SG acco-rding tg f(x,,%,) = -1.0037418244
w.=(l-j+1)/I . This is consistent with the fact that in 1-point ¥ = 1.9981788993
crossover the bits are more likely to be interchanged if L '

they are close to the rightmost bit in the genome. X, = 2.9264232963

f(x,x,) = 3X12 + 25sin(x,)cos(x,) + 2X22
+ cos(x,) + sin(2x,) - 27.5

n

n

and
3. Objective Functions r1(1.9981788993, 2.9264232963)10°

8 problems, along with their objective functions were r,(1.9981788993,2.9264232963) 10°
defined to test the behavior of all 8 variations described
above. In what follows we briefly describe the problemsRemarks. Problems 3 and 4 are an attempt to find a

and make some light remarks. general (evolutionary) algorithm for the solution of
simultaneous non-linear equations. The method is simple.
Problem 1: We obtain a linear combination of theequations to be
solved (in this casen = 2). Here we simply added the
Maximize equations. Then we establish the need to minimize the
f=x, + sin (32) | - | cos(1L,) | composite function thusly obtained and impose the need to
Subject to: satisfy the requirement that the original equations=@
0<x <10 In trying to minimize de composite function without
0< x: < T violating the constraints, such constraints are also
. T2 minimized and the original problem is solved. Notice that
Solution: ' .
we could have equally well defined the problem in terms
f(x,,x,) = 4.0930 of maximization. Then we would have imposed the
X = 3.0935 condition that the constraints remain0
x, = 2.1420
Problem 5:
Problem 2:
Minimize
Maximize f(x,,%,) = 100(x, - X[)? + (1-x,)?
(X, %) = —(x -5F-(x,-3) Subject to:
Solution: X, + x2> 0
f(x,%) = 0 ex 20
X, =5.0 1 1
= - +
X, =3.0 > <X < 5
Problem 3: . Tlsx<el
Solution:
Minimize f(x;,x,) = 0.2500000
f(X,%) = X + X7 + XX, + 2% + 2%, - 13 x, = 0.5000049
Subject to: X, = 0.2500051
040) =X+ % =X + % - 820 Problem 6:
r,(X,X%,)= XX, +X +X -520
Solution: Minimize
f(x;,%x,) = 0.0009879 f(X,%) = =X, - X%
x, = 1.0005490
X, = 1.9996705
and

r,(1.0005490,1.9996705§ 10°
r,(1.0005490,1.9996705% 10



Subject to:
X, < 2% - 8% + 8x + 2
X, < 4% - 32x  + 88x - 96x, + 36

0<x <3
0<sx,<4
Solution:
f(x,,x,) = 5.466036
X, = 2.339889
X, = 3.126146
Problem 7:
Minimize

f) = (% - 10) + (x, - 20¥

Subject to:
(x, -5y +(x, -5y -100= 0
-(x, -6 - (x, -5¢ +828%k0

13 < x, <100
0<x, =100
Solution:
f(x,,%,) = -6961.668579
X, = 14.095059
X, = 0.843090
Problem 8:
Minimize
) - len -17 - Bt —4F
SR
Solution:
f(x) = 10°®
X, = -3x108

1

4. Experiments

We conducted a set of experiments as follows:

wherebest is the best individual in generatiarand Best
is the known solution.

e) The value oBestwas determined by running
an eclectic [7] GA for an appropriate number of
generations.

4.1. Results

In the following figures we show the results of the
conducted experiments. Tle;).  have been plotted every
5 generations. The vertical axis corresponds to the error
while the horizontal axis corresponds to the generation.
F_Gxx denotes thexx-th  generation. It should be noted
that in these experiments rarely was the best value of the
objective function reached. This is of no importance
because it was not our intent to test the speed of
convergence but, rather, the relative performance between
the different variations. Also, this behavior is to be
expected when the number of allotted generations is as
small as in hereG = 50).

In figure 1 we showe, for SGE1P and STE1P
algorithms in problem 1. Both GAs reach an acceptable
but the standard GA outperforms the statistical GA in the
final stages of the algorithm.
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Figure 1. Elitist 1-point Crossover for Problem 1.
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In figure 2 we show the RE for SGEUN and
STEUN. Notice that SGEUN's performance is worse than

a) Every one of the 8 variations was run 5 times sGg1pP’s whereas STEUN is markedly better than STE1P.

with different seeds for the random number generator for

each of the 8 objective functions. Thus, a total of 320
simulations were run.

b) In all cases we sdétl = 50 andG = 50.

c) In problems 1, 3, 4, 5, 6 and 7 (which are
constrained) we used a death penalty for those individuals
not complying with the constraints. Fitness of an
individual is determined from

ad f.(x) if feasible
[ = E K-Y E;K_Eotherwise (4.2)
O i=1 M0
whereK = 10°, s = number of satisfied constraints.
d) The behavior of the algorithms was registered
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for each of the 50 generations. We calculated the relative
error (g, ) for thei-th generation from

max( | best|, |Best/) - min(|best
(&) =
| Best|

Best|)

(4.b)

Figure 2. Elitist Uniform Crossover for Problem 1.

In this case, the fact that,
the statistical and standard cases respectively (in figure 1)

starts from,8®and 90% in




and from 50% and 796 (in figure 2) denotes the fact that
there was, at least, one individual which did comply with
the constraints in the first 5 generations.

In figure 3 we show the RE for SGA1P and
STA1P in problem 7. Here_, for SGALP starts at 100%
meaning that no feasible individuals were present during
the initial generations of the algorithm.
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Figure 3. Non-elitist 1-point Crossover for Problem 7

In figure 4 ¢, for SGAUN and STAUN for
problem 7 is shown. In both figures 3 and 4 the statistical
variations outperform their traditional counterparts.
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Figure 6. Non-elitist Uniform Relative Error.
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Figure 4. Non-elitist Uniform Crossover for Problem 7.

In order to have a more complete picture of the
actual behavior of the 8 variations we averaged the result
for all eight problems. In the next 4 figures (5, 6, 7 and 8)
we show the averaged relative error grouped by variation
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a) Non-elitist/1-point, b) Non-elitist/uniform, c) Elitist/1-
point and d) Elitist/uniform.

Figure 7. Elitist 1-point Relative Error.

With the exception of the elitist algorithms with
1-point crossover, all the statistical variations yielded
better behaviors than their counterparts.

Finally, in figure 9 we show the averagg,
all 8 variations we explored.
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Figure 9. Average Error for All Problems.
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