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The Weibull distribution is one of the most widely used lifetime distributions in reliability 
engineering. It is a versatile distribution that can take on the characteristics of other types of 
distributions, based on the value of the shape parameter, b. This chapter provides a brief 
background on the Weibull distribution, presents and derives most of the applicable 
equations and presents examples calculated both manually and by using Weibull++. 

This chapter is made up of the following sections: 

•  Weibull Probability Density Function 
•  Weibull Statistical Properties 
•  Characteristics of the Weibull Distribution 
•  Estimation of the Weibull Parameters 
•  Fisher Matrix Confidence Bounds for the Weibull Distribution 
•  Likelihood Ratio Confidence Bounds for the Weibull Distribution 
•  Bayesian Confidence Bounds for the Weibull Distribution 
•  Weibull-Bayesian Analysis 
•  General Examples Using the Weibull Distribution 
•  Published Examples Using the Weibull Distribution 

Characteristics of the Weibull Distribution 
As was mentioned previously, the Weibull distribution is widely used in reliability and life 
data analysis due to its versatility. Depending on the values of the parameters, the Weibull 
distribution can be used to model a variety of life behaviors. We will now examine how the 
values of the shape parameter, b, and the scale parameter, h, affect such distribution 
characteristics as the shape of the pdf curve, the reliability and the failure rate. Note that in 
the rest of this section we will assume the most general form of the Weibull distribution, 
i.e. the three-parameter form. The appropriate substitutions to obtain the other forms, such 
as the two-parameter form where g = 0, or the one-parameter form where b = C = constant, 
can easily be made. 

This section includes the following subsections: 

•  Characteristic Effects of the Shape Parameter, b, for the Weibull Distribution 
•  Characteristic Effects of the Scale Parameter, h, for the Weibull Distribution 
•  Characteristic Effects of the Location Parameter, g, for the Weibull Distribution 



Weibull Statistical Properties 

The Mean or MTTF 

The mean, , (also called MTTF or MTBF by some authors) of the Weibull pdf is given 
by: 

(3) 

where is the gamma function evaluated at the value of . The gamma 
function is defined as: 

 

This function is provided within Weibull++ for calculating the values of G(n) at any value 
of n. This function is located in the Quick Statistical Reference of Weibull++. 

For the two-parameter case, Eqn. (3) can be reduced to: 

 

Note that some practitioners erroneously assume that h is equal to the MTBF or MTTF. 
This is only true for the case of b = 1 since  

The Median 

The median, , is given by: 

(4) 

The Mode 

The mode, , is given by: 

(5) 



The Standard Deviation 

The standard deviation, sT, is given by: 

 

The Weibull Reliability Function 

The equation for the three-parameter Weibull cumulative density function, cdf, is given by: 

 
[Click to enlarge] 

Recalling that the reliability function of a distribution is simply one minus the cdf, the 
reliability function for the three-parameter Weibull distribution is given by: 

 
[Click to enlarge] 

The Weibull Conditional Reliability Function 

The three-parameter Weibull conditional reliability function is given by: 

(6) 
[Click to enlarge] 

or: 

 
[Click to enlarge] 

Eqn. (6) gives the reliability for a new mission of t duration, having already accumulated T 
hours of operation up to the start of this new mission, and the units are checked out to 
assure that they will start the next mission successfully. It is called conditional because you 
can calculate the reliability of a new mission based on the fact that the unit or units already 
accumulated T hours of operation successfully. 



The Weibull Reliable Life 

The reliable life, TR, of a unit for a specified reliability, starting the mission at age zero, is 
given by: 

(7) 

This is the life for which the unit will be functioning successfully with a reliability of R(TR). 
If R(TR) = 0.50 then , the median life, or the life by which half of the units will 
survive. 

The Weibull Failure Rate Function 

The Weibull failure rate function, l(T), is given by: 

 



http://en.wikipedia.org/wiki/Weibull_distribution 

Weibull distribution 
From Wikipedia, the free encyclopedia 
Jump to: navigation, search 

Weibull 

Probability density function 

Cumulative distribution function 

Parameters scale (real) 
shape (real) 

Support  

pdf 
 

cdf 
 

Mean 

 

Median 
 

Mode  

Variance 

 

Skewness 

 

Kurtosis (see text) 



Entropy 

mgf see Weibull fading 

Char. func.  

In probability theory and statistics, the Weibull distribution (named after Waloddi 
Weibull) is a continuous probability distribution with the probability density function 

 

where and k > 0 is the shape parameter and λ > 0 is the scale parameter of the 
distribution. 

The cumulative density function is defined as 

 

where again, x > 0. 

The failure rate h (or hazard rate) is given by: 

h(x;k,λ) = (k / λ)(x / λ)(k − 1) 

 
Weibull distributions are often used to model the time until a given technical device fails. If 
the failure rate of the device decreases over time, one chooses k < 1 (resulting in a 
decreasing density f). If the failure rate of the device is constant over time, one chooses k = 
1, again resulting in a decreasing function f. If the failure rate of the device increases over 
time, one chooses k > 1 and obtains a density f which increases towards a maximum and 
then decreases forever. Manufacturers will often supply the shape and scale parameters for 
the lifetime distribution of a particular device. The Weibull distribution can also be used to 
model the distribution of wind speeds at a given location on Earth. Again, every location is 
characterized by a particular shape and scale parameter. 
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[edit] 

Properties 

The nth raw moment is given by: 

 

where Γ is the Gamma function. The expected value and standard deviation of a Weibull 
random variable can be expressed as: 

 

and 

 

The skewness is given by: 

 

The kurtosis excess is given by: 

 

where Γi = Γ(1 + i / k). The kurtosis excess may also be written: 

 
[edit] 



Generating Weibull-distributed random variates 

Given a random variate U drawn from the uniform distribution in the interval (0, 1], then 
the variate 

 

has a Weibull distribution with parameters k and λ. This follows from the form of the 
cumulative distribution function. 

[edit] 

Related distributions 

•  is an exponential distribution if 

. 

•  is a Rayleigh distribution if 

. 

•  is a Weibull distribution if . 
•  See also the generalized extreme value distribution. 

[edit] 

Uses 

The Weibull distribution gives the distribution of lifetimes of objects. It is also used in 
analysis of systems involving a weakest link. The Weibull distribution is often used in 
place of the Normal distribution due to the fact that a Weibull variate can be generated 
through inversion, while Normal variates are typically generated using the more 
complicated Box-Muller Method, which requires two uniform random variates. Weibull 
distributions may also be used to represent manufacturing and delivery times in industrial 
engineering problems, while it is very important in extreme value theory and weather 
forecasting. It is also a very popular statistical model in reliability engineering and failure 
analysis, while it is widely applied in radar systems to model the dispersion of the received 
signals level produced by some types of clutters. Furthermore, concerning wireless 
communications, the Weibull distribution may be used for fading channel modelling, since 
the Weibull fading model seems to exhibit good fit to experimental fading channel 
measurements. 
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The normal distribution, also called Gaussian distribution, is an extremely important 
probability distribution in many fields. It is a family of distributions of the same general 
form, differing in their location and scale parameters: the mean ("average") and standard 
deviation ("variability"), respectively. The standard normal distribution is the normal 
distribution with a mean of zero and a standard deviation of one (the green curves in the 



plots to the right). It is often called the bell curve because the graph of its probability 
density resembles a bell. 
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[edit] 

Overview 

The normal distribution is a convenient model of quantitative phenomena in the natural and 
behavioral sciences. A variety of psychological test scores and physical phenomena like 



photon counts have been found to approximately follow a normal distribution. While the 
underlying causes of these phenomena are often unknown, the use of the normal 
distribution can be theoretically justified in situations where many small effects are added 
together into a score or variable that can be observed. The normal distribution also arises in 
many areas of statistics: for example, the sampling distribution of the mean is 
approximately normal, even if the distribution of the population the sample is taken from is 
not normal. In addition, the normal distribution maximizes information entropy among all 
distributions with known mean and variance, which makes it the natural choice of 
underlying distribution for data summarized in terms of sample mean and variance. The 
normal distribution is the most widely used family of distributions in statistics and many 
statistical tests are based on the assumption of normality. In probability theory, normal 
distributions arise as the limiting distributions of several continuous and discrete families of 
distributions. 

[edit] 

History 

The normal distribution was first introduced by de Moivre in an article in 1733 (reprinted in 
the second edition of his The Doctrine of Chances, 1738) in the context of approximating 
certain binomial distributions for large n. His result was extended by Laplace in his book 
Analytical Theory of Probabilities (1812), and is now called the theorem of de Moivre-
Laplace. 

Laplace used the normal distribution in the analysis of errors of experiments. The important 
method of least squares was introduced by Legendre in 1805. Gauss, who claimed to have 
used the method since 1794, justified it rigorously in 1809 by assuming a normal 
distribution of the errors. 

The name "bell curve" goes back to Jouffret who first used the term "bell surface" in 1872 
for a bivariate normal with independent components. The name "normal distribution" was 
coined independently by Charles S. Peirce, Francis Galton and Wilhelm Lexis around 1875. 
This terminology is unfortunate, since it reflects and encourages the fallacy that many or all 
probability distributions are "normal". (See the discussion of "occurrence" below.) 

That the distribution is called the normal or Gaussian distribution is an instance of Stigler's 
law of eponymy: "No scientific discovery is named after its original discoverer." 

[edit] 

Specification of the normal distribution 

There are various ways to specify a random variable. The most visual is the probability 
density function (plot at the top), which represents how likely each value of the random 
variable is. The cumulative distribution function is a conceptually cleaner way to specify 
the same information, but to the untrained eye its plot is much less informative (see below). 



Equivalent ways to specify the normal distribution are: the moments, the cumulants, the 
characteristic function, the moment-generating function, and the cumulant-generating 
function. Some of these are very useful for theoretical work, but not intuitive. See 
probability distribution for a discussion. 

All of the cumulants of the normal distribution are zero, except the first two. 

[edit] 

Probability density function 

 
 

Probability density function for 4 different parameter sets (green line is the standard 
normal) 

The probability density function of the normal distribution with mean µ and variance σ2 
(equivalently, standard deviation σ) is an example of a Gaussian function, 

 

(See also exponential function and pi.) 

If a random variable X has this distribution, we write X ~ N(µ,σ2). If µ = 0 and σ = 1, the 
distribution is called the standard normal distribution and the probability density function 
reduces to 

 

The image to the right gives the graph of the probability density function of the normal 
distribution various parameter values. 



Some notable qualities of the normal distribution: 

•  The density function is symmetric about its mean value. 
•  The mean is also its mode and median. 
•  68.268949% of the area under the curve is within one standard deviation of the 

mean. 
•  95.449974% of the area is within two standard deviations. 
•  99.730020% of the area is within three standard deviations. 
•  99.993666% of the area is within four standard deviations. 
•  The inflection points of the curve occur at one standard deviation away from the 

mean. 

[edit] 

Cumulative distribution function 

 
 

Cumulative distribution function of the above pdf 

The cumulative distribution function (cdf) is defined as the probability that a variable X has 
a value less than or equal to x, and it is expressed in terms of the density function as 

 

The standard normal cdf, conventionally denoted Φ, is just the general cdf evaluated with µ 
= 0 and σ = 1, 

 



The standard normal cdf can be expressed in terms of a special function called the error 
function, as 

 

The inverse cumulative distribution function, or quantile function, can be expressed in 
terms of the inverse error function: 

 

This quantile function is sometimes called the probit function. There is no elementary 
primitive for the probit function. This is not to say merely that none is known, but rather 
that the non-existence of such a function has been proved. 

Values of Φ(x) may be approximated very accurately by a variety of methods, such as 
numerical integration, Taylor series, or asymptotic series. 

[edit] 

Generating functions 
[edit] 

Moment generating function 

The moment generating function is defined as the expected value of exp(tX). For a normal 
distribution, it can be shown that the moment generating function is 

  

  
 

  
 

as can be seen by completing the square in the exponent. 

[edit] 

Characteristic function 

The characteristic function is defined as the expected value of exp(itX), where i is the 
imaginary unit. For a normal distribution, the characteristic function is 



  

  
 

  
 

The characteristic function is obtained by replacing t with it in the moment-generating 
function. 

[edit] 

Properties 

Some of the properties of the normal distribution: 

1. If and a and b are real numbers, then 

(see expected value and variance). 

2. If and are independent normal random 
variables, then:  

o Their sum is normally distributed with 

(proof). 
o Their difference is normally distributed with 

. 
o Both U and V are independent of each other. 

3. If and are independent normal random 
variables, then:  

o Their product XY follows a distribution with density p given by  

where K0 is a modified Bessel function. 

o Their ratio follows a Cauchy distribution with 

. 
4. If are independent standard normal variables, then 

has a chi-square distribution with n degrees of freedom. 

[edit] 



Standardizing normal random variables 

As a consequence of Property 1, it is possible to relate all normal random variables to the 
standard normal. 

If X ~ N(µ,σ2), then 

 

is a standard normal random variable: Z ~ N(0,1). An important consequence is that the cdf 
of a general normal distribution is therefore 

 

Conversely, if Z ~ N(0,1), then 

X = σZ + µ 

is a normal random variable with mean µ and variance σ2. 

The standard normal distribution has been tabulated, and the other normal distributions are 
simple transformations of the standard one. Therefore, one can use tabulated values of the 
cdf of the standard normal distribution to find values of the cdf of a general normal 
distribution. 

[edit] 

Moments 

Some of the first few moments of the normal distribution are: 

Number Raw moment Central moment Cumulant
0 1 0  
1 µ 0 µ 
2 µ2 + σ2 σ2 σ2 
3 µ3 + 3µσ2 0 0 
4 µ4 + 6µ2σ2 + 3σ4 3σ4 0 

All of cumulants of the normal distribution beyond the second cumulant are zero. 

[edit] 



Generating normal random variables 

For computer simulations, it is often useful to generate values that have a normal 
distribution. There are several methods and the most basic is to invert the standard normal 
cdf. More efficient methods are also known, one such method being the Box-Muller 
transform. 

The Box-Muller transform takes two uniformly distributed values as input and maps them 
to two normally distributed values. This requires generating values from a uniform 
distribution, for which many methods are known. See also random number generators. 

The Box-Muller transform is a consequence of the fact that the chi-square distribution with 
two degrees of freedom (see property 4 above) is an easily-generated exponential random 
variable. 

[edit] 

The central limit theorem 

 
 

Plot of the pdf of a normal distribution with µ = 12 and σ = 3, approximating the pmf of a 
binomial distribution with n = 48 and p = 1/4 

The normal distribution has the very important property that under certain conditions, the 
distribution of a sum of a large number of independent variables is approximately normal. 
This is the central limit theorem. 

The practical importance of the central limit theorem is that the normal distribution can be 
used as an approximation to some other distributions. 

•  A binomial distribution with parameters n and p is approximately normal for large n 
and p not too close to 1 or 0 (some books recommend using this approximation only 
if np and n(1 − p) are both at least 5; in this case, a continuity correction should be 
applied). 



The approximating normal distribution has mean µ = np and variance σ2 = np(1 − p). 

•  A Poisson distribution with parameter λ is approximately normal for large λ. 

The approximating normal distribution has mean µ = λ and variance σ2 = λ. 

Whether these approximations are sufficiently accurate depends on the purpose for which 
they are needed, and the rate of convergence to the normal distribution. It is typically the 
case that such approximations are less accurate in the tails of the distribution. 

[edit] 

Infinite divisibility 

The normal distributions are infinitely divisible probability distributions. 

[edit] 

Stability 

The normal distributions are strictly stable probability distributions. 

[edit] 

Standard deviation 

 
 

Dark blue is less than one standard deviation from the mean. For the normal distribution, 
this accounts for 68% of the set while two standard deviations from the mean (blue and 
brown) account for 95% and three standard deviations (blue, brown and green) account for 
99.7%. 

In practice, one often assumes that data are from an approximately normally distributed 
population. If that assumption is justified, then about 68% of the values are at within 1 
standard deviation away from the mean, about 95% of the values are within two standard 
deviations and about 99.7% lie within 3 standard deviations. This is known as the "68-95-
99.7 rule". 

 

[edit] 



Normality tests 

Normality tests check a given set of data for similarity to the normal distribution. The null 
hypothesis is that the data set is similar to the normal distribution, therefore a sufficiently 
small P-value indicates non-normal data. 

•  Kolmogorov-Smirnov test 
•  Lilliefors test 
•  Anderson-Darling test 
•  Ryan-Joiner test 
•  Shapiro-Wilk test 
•  normal probability plot (rankit plot) 
•  Jarque-Bera test 

[edit] 

Related distributions 

•  is a Rayleigh distribution if where 

and are two independent normal distributions. 

•  is a chi-square distribution with ν degrees of freedom if 

where for and are independent 

•  is a Cauchy distribution if Y = X1 / X2 for 

and are two independent normal distributions. 

•  is a log-normal distribution if Y = exp(X) and 

. 
•  Relation to Lévy skew alpha-stable distribution: if 

then . 

[edit] 

Estimation of parameters 
[edit] 

Maximum likelihood estimation of parameters 

Suppose 

 



are independent and identically distributed, and are normally distributed with expectation µ 
and variance σ2. In the language of statisticians, the observed values of these random 
variables make up a "sample from a normally distributed population." It is desired to 
estimate the "population mean" µ and the "population standard deviation" σ, based on 
observed values of this sample. The joint probability density function of these random 
variables is 

 

(Nota bene: Here the proportionality symbol means proportional as a function of µ 
and σ, not proportional as a function of . That may be considered one of the 
differences between the statistician's point of view and the probabilist's point of view. The 
reason why this is important will appear below.) 

As a function of µ and σ this is the likelihood function 

 

In the method of maximum likelihood, the values of µ and σ that maximize the likelihood 
function are taken to be estimates of the population parameters µ and σ. 

Usually in maximizing a function of two variables one might consider partial derivatives. 
But here we will exploit the fact that the value of µ that maximizes the likelihood function 
with σ fixed does not depend on σ. Therefore, we can find that value of µ, then substitute it 
from µ in the likelihood function, and finally find the value of σ that maximizes the 
resulting expression. 

It is evident that the likelihood function is a decreasing function of the sum 

 

So we want the value of µ that minimizes this sum. Let 

 

be the "sample mean". Observe that 

 



 

 

Only the last term depends on µ and it is minimized by 

 

That is the maximum-likelihood estimate of µ. Substituting that for µ in the sum above 
makes the last term vanish. Consequently, when we substitute that estimate for µ in the 
likelihood function, we get 

 

It is conventional to denote the "loglikelihood function", i.e., the logarithm of the likelihood 
function, by a lower-case , and we have 

 

and then 

 

This derivative is positive, zero, or negative according as σ2 is between 0 and 

 

or equal to that quantity, or greater than that quantity. 

Consequently this average of squares of residuals is maximum-likelihood estimate of σ2, 
and its square root is the maximum-likelihood estimate of σ. 

[edit] 



Surprising generalization 

The derivation of the maximum-likelihood estimator of the covariance matrix of a 
multivariate normal distribution is subtle. It involves the spectral theorem and the reason 
why it can be better to view a scalar as the trace of a 1×1 matrix than as a mere scalar. See 
estimation of covariance matrices. 

[edit] 

Unbiased estimation of parameters 

The maximum likelihood estimator of the population mean µ from a sample is an unbiased 
estimator of the mean, as is the variance when the mean of the population is known a 
priori. However, if we are faced with a sample and have no knowledge of the mean or the 
variance of the population from which it is drawn, the unbiased estimator of the variance σ2 
is: 

 
[edit] 

Occurrence 

Approximately normal distributions occur in many situations, as a result of the central limit 
theorem. When there is reason to suspect the presence of a large number of small effects 
acting additively and independently, it is reasonable to assume that observations will be 
normal. There are statistical methods to empirically test that assumption, for example the 
Kolmogorov-Smirnov test. 

Effects can also act as multiplicative (rather than additive) modifications. In that case, the 
assumption of normality is not justified, and it is the logarithm of the variable of interest 
that is normally distributed. The distribution of the directly observed variable is then called 
log-normal. 

Finally, if there is a single external influence which has a large effect on the variable under 
consideration, the assumption of normality is not justified either. This is true even if, when 
the external variable is held constant, the resulting marginal distributions are indeed 
normal. The full distribution will be a superposition of normal variables, which is not in 
general normal. This is related to the theory of errors (see below). 

To summarize, here is a list of situations where approximate normality is sometimes 
assumed. For a fuller discussion, see below. 

•  In counting problems (so the central limit theorem includes a discrete-to-continuum 
approximation) where reproductive random variables are involved, such as  

o Binomial random variables, associated to yes/no questions; 



o Poisson random variables, associated to rare events; 
•  In physiological measurements of biological specimens:  

o The logarithm of measures of size of living tissue (length, height, skin area, 
weight); 

o The length of inert appendages (hair, claws, nails, teeth) of biological 
specimens, in the direction of growth; presumably the thickness of tree bark 
also falls under this category; 

o Other physiological measures may be normally distributed, but there is no 
reason to expect that a priori; 

•  Measurement errors are assumed to be normally distributed, and any deviation from 
normality must be explained; 

•  Financial variables  
o The logarithm of interest rates, exchange rates, and inflation; these variables 

behave like compound interest, not like simple interest, and so are 
multiplicative; 

o Stock-market indices are supposed to be multiplicative too, but some 
researchers claim that they are Levy-distributed variables instead of 
lognormal; 

o Other financial variables may be normally distributed, but there is no reason 
to expect that a priori; 

•  Light intensity  
o The intensity of laser light is normally distributed; 
o Thermal light has a Bose-Einstein distribution on very short time scales, and 

a normal distribution on longer timescales due to the central limit theorem. 

Of relevance to biology and economics is the fact that complex systems tend to display 
power laws rather than normality. 

[edit] 

Photon counting 

Light intensity from a single source varies with time, as thermal fluctuations can be 
observed if the light is analyzed at sufficiently high time resolution. The intensity is usually 
assumed to be normally distributed. In the classical theory of optical coherence, light is 
modelled as an electromagnetic wave,and correlations are observed and analyzed up to the 
second order, consistently with the assumption of normality. (See Gaussian stochastic 
process) 

However, non-classical correlations are sometimes observed. Quantum mechanics 
interprets measurements of light intensity as photon counting. The natural assumption in 
this setting is the Poisson distribution. When light intensity is integrated over times longer 
than the coherence time and is large, the Poisson-to-normal limit is appropriate. 
Correlations are interpreted in terms of "bunching" and "anti-bunching" of photons with 
respect to the expected Poisson behaviour. Anti-bunching requires a quantum model of 
light emission. 



Ordinary light sources producing light by thermal emission display a so-called blackbody 
spectrum (of intensity as a function of frequency), and the number of photons at each 
frequency follows a Bose-Einstein distribution (a geometric distribution). The coherence 
time of thermal light is exceedingly low, and so a Poisson distribution is appropriate in 
most cases, even when the intensity is so low as to preclude the approximation by a normal 
distribution. 

The intensity of laser light has an exactly Poisson intensity distribution and long coherence 
times. The large intensities make it appropriate to use the normal distribution. 

It is interesting that the classical model of light correlations applies only to laser light, 
which is a macroscopic quantum phenomenon. On the other hand, "ordinary" light sources 
do not follow the "classical" model or the normal distribution. 

[edit] 

Measurement errors 

Normality is the central assumption of the mathematical theory of errors. Similarly, in 
statistical model-fitting, an indicator of goodness of fit is that the residuals (as the errors are 
called in that setting) be independent and normally distributed. Any deviation from 
normality needs to be explained. In that sense, both in model-fitting and in the theory of 
errors, normality is the only observation that need not be explained, being expected. 

Repeated measurements of the same quantity are expected to yield results which are 
clustered around a particular value. If all major sources of errors have been taken into 
account, it is assumed that the remaining error must be the result of a large number of very 
small additive effects, and hence normal. Deviations from normality are interpreted as 
indications of systematic errors which have not been taken into account. 

[edit] 

Physical characteristics of biological specimens 

The overwhelming biological evidence is that bulk growth processes of living tissue 
proceed by multiplicative, not additive, increments, and that therefore measures of body 
size should at most follow a lognormal rather than normal distribution. Despite common 
claims of normality, the sizes of plants and animals is approximately lognormal. The 
evidence and an explanation based on models of growth was first published in the classic 
book 

Huxley, Julian: Problems of Relative Growth (1932) 

Differences in size due to sexual dimorphism, or other polymorphisms like the 
worker/soldier/queen division in social insects, further make the joint distribution of sizes 
deviate from lognormality. 



The assumption that linear size of biological specimens is normal leads to a non-normal 
distribution of weight (since weight/volume is roughly the 3rd power of length, and 
Gaussian distributions are only preserved by linear transformations), and conversely 
assuming that weight is normal leads to non-normal lengths. This is a problem, because 
there is no a priori reason why one of length, or body mass, and not the other, should be 
normally distributed. Lognormal distributions, on the other hand, are preserved by powers 
so the "problem" goes away if lognormality is assumed. 

On the other hand, there are some biological measures where normality is assumed or 
expected: 

•  blood pressure of adult humans is supposed to be normally distributed, but only 
after separating males and females into different populations (each of which is 
normally distributed) 

•  The length of inert appendages such as hair, nails, teeth, claws and shells is 
expected to be normally distributed if measured in the direction of growth. This is 
because the growth of inert appendages depends on the size of the root, and not on 
the length of the appendage, and so proceeds by additive increments. Hence, we 
have an example of a sum of very many small increments (possibly lognormal) 
approaching a normal distribution. Another plausible example is the width of tree 
trunks, where a new thin ring is produced every year whose width is affected by a 
large number of factors. 

[edit] 

Financial variables 

Because of the exponential nature of interest and inflation, financial indicators such as 
interest rates, stock values, or commodity prices make good examples of multiplicative 
behavior. As such, they should not be expected to be normal, but lognormal. 

Benoît Mandelbrot, the popularizer of fractals, has claimed that even the assumption of 
lognormality is flawed, and advocates the use of log-Levy distributions. 

It is accepted that financial indicators deviate from lognormality. The distribution of price 
changes on short time scales is observed to have "heavy tails", so that very small or very 
large price changes are more likely to occur than a lognormal model would predict. 
Deviation from lognormality indicates that the assumption of independence of the 
multiplicative influences is flawed. 

[edit] 

Lifetime 

Other examples of variables that are not normally distributed include the lifetimes of 
humans or mechanical devices. Examples of distributions used in this connection are the 
exponential distribution (memoryless) and the Weibull distribution. In general, there is no 



reason that waiting times should be normal, since they are not directly related to any kind 
of additive influence. 

[edit] 

Distribution in testing and intelligence 

A great deal of confusion exists over whether or not IQ test scores and intelligence are 
normally distributed. 

As a deliberate result of test construction, IQ scores are always and obviously normally 
distributed for the majority of the population. Whether intelligence is normally distributed 
is less clear. The difficulty and number of questions on an IQ test is decided based on 
which combinations will yield a normal distribution. This does not mean, however, that the 
information is in any way being misrepresented, or that there is any kind of "true" 
distribution that is being artificially forced into the shape of a normal curve. Intelligence 
tests can be constructed to yield any kind of score distribution desired. All true IQ tests 
have a normal distribution of scores as a result of test design; otherwise IQ scores would be 
meaningless without knowing what test produced them. Intelligence tests in general, 
however, can produce any kind of distribution. 

For an example of how arbitrary the distribution of intelligence test scores really is, 
imagine a 20-item multiple-choice test entirely composed of problems that consist mostly 
of finding the areas of circles. Such a test, if given to a population of high-school students, 
would likely yield a U-shaped distribution, with the bulk of the scores being very high or 
very low, instead of a normal curve. If a student understands how to find the area of a 
circle, he can likely do so repeatedly and with few errors, and thus would get a perfect or 
high score on the test, whereas a student who has never had geometry lessons would likely 
get every question wrong, possibly with a few right due to guessing luck. If a test is 
composed mostly of easy questions, then most of the test-takers will have high scores and 
very few will have low scores. If a test is composed entirely of questions so easy or so hard 
that every person gets either a perfect score or a zero, it fails to make any kind of statistical 
discrimination at all and yields a rectangular distribution. These are just a few examples of 
the many varieties of distributions that could theoretically be produced by carefully 
designing intelligence tests. 

Whether intelligence itself is normally distributed has been at times a matter of some 
debate. Some critics maintain that the choice of a normal distribution is entirely arbitrary. 
Brian Simon once claimed that the normal distribution was specifically chosen by 
psychometricians to falsely support the idea that superior intelligence is only held by a 
small minority, thus legitimizing the rule of a privileged elite over the masses of society. 
Historically, though, intelligence tests were designed without any concern for producing a 
normal distribution, and scores came out approximately normally distributed anyway. 
American educational psychologist Arthur Jensen claims that any test that contains "a large 
number of items," "a wide range of item difficulties," "a variety of content or forms," and 
"items that have a significant correlation with the sum of all other scores" will inevitably 
produce a normal distribution. Furthermore, there exists a number of correlations between 



IQ scores and other human characteristics that are more provably normally distributed, such 
as nerve conduction velocity and the glucose metabolism rate of a person's brain, 
supporting the idea that intelligence is normally distributed. 

Some critics, such as Stephen Jay Gould in his book The Mismeasure of Man, question the 
validity of intelligence tests in general, not just the fact that intelligence is normally 
distributed. For further discussion see the article IQ. 

The Bell Curve is a controversial book on the topic of the heritability of intelligence. 
However, despite its title, the book does not primarily address whether IQ is normally 
distributed. 

[edit] 

See also 

•  Normally distributed and uncorrelated does not imply independent (an example of 
two normally distributed uncorrelated random variables that are not independent; 
this cannot happen in the presence of joint normality) 

•  lognormal distribution 
•  multivariate normal distribution 
•  probit function 
•  Student's t-distribution 
•  Behrens-Fisher problem 

[edit] 
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External links 

•  Interactive Distribution Modeler (incl. Normal Distribution). 
•  basic tools for sixsigma 
•  PlanetMath: normal random variable 
•  GNU Scientific Library – Reference Manual – The Gaussian Distribution 
•  Distribution Calculator – Calculates probabilities and critical values for normal, t, 

chi-square and F-distribution. 
•  Public Domain Normal Distribution Table 
•  Is normal distribution due to Karl Gauss? Euler, his family of gamma functions, and 

place in history of statistics 
•  Maxwell demons: Simulating probability distributions with functions of 

propositional calculus 
•  Normal distribution table 

 


