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Abstract 

 
Several lossless data compression schemes have been 
proposed over the past years. Since Shannon developed 
information theory in his seminal paper, however, the 
problem of data compression has hinged (even though not 
always explicitly) on the consideration of an ergodic 
source. In dealing with such sources one has to cope with 
the problem of defining a priori the minimum sized 
symbol. The designer, therefore, is faced with the 
necessity of choosing beforehand the characteristics of 
the basic underlying element with which he or she is to 
attempt data compression. In this paper we address the 
problem of finding the characteristics of the basic 
symbols to consider in information treatment without 
assuming the form of such symbols in the data source. In 
so doing we expect to achieve a pseudo-ergodic behavior 
of the source. Then we are able to exploit the 
characteristics of such sources. Finding the basic 
elements (which we call “metasymbols”) is a complex 
(NP complete) optimization task. Therefore, we make use 
of a non-traditional Genetic Algorithm (VGA) which has 
been shown to have excellent performance, to find the 
metasymbols. In this paper we discuss the problem, the 
proposed methodology, some of the results obtained so 
far and point to future lines of research. 
 
1. Introduction 
In the publication in 1948 [1] of Shannon�s original paper 
on information theory (IT) the concept of information 
attached to a symbol stemming from a source assumed 
unknown but from which it is possible to estimate its 
probability was born. We may, then, define the 
information associated to such symbol as 

)ilog(p)iI(s −=                                 (1) 
where si denotes the i-th symbol and pi denotes the 
probability that the symbol is output from the source; 
logarithms are assumed base 2. This definition is 
appealing in that it satisfies two intuitive notions about 
information: First, it assigns greater information to   that 
which   is    more  unexpected,   that   is,   something   not 

 expected �tells� us more than something which is 
frequent. Second, it corresponds to our idea that 
information must be additive; that is, the information of 
two symbols should be the same as the information of 
each taken separately: 
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This, clearly, shows the two probabilities as a product and 
the amount of information as an addition. This is an 
engineering definition based in probabilities and not one 
based in the meaning of the symbols for a human receiver. 
It is easy (and common) to confuse the knowledge 
associated to the process of interpretation of the symbols 
with the information they carry. 
         On the other hand, information defined in such way 
is also consistent in the sense that it restricts how we 
define a symbol. Assume, without loss of generality, that 
when conveying information we imply some sort of 
binary encoding. In this case, IT allows us to define 
symbols as n-ary sets of bits, where n is arbitrary. For 
example, if n1 = 4, then the alphabet corresponds to 16 
bits and there are 16 probabilities: one for each one of the 
symbols, with their corresponding information. Now let 
us assume that we decide to take 8 bits per symbol. In this 
case (n2 = 8) we have 256 symbols with the corresponding 
probabilities and information. However, in view of (2), 
the information associated to pairs of symbols for n1 is the 
same as the one associated to individual symbols for n2. 
         A basic concept associated to the previous 
definitions is that of the average information for a given 
source. This quantity is called the entropy and is 
expressed as 
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It is important to remark that a phrase such as �Let us 
consider the entropy of the source...� is meaningless 
unless we include a model of such source. The entropy 
function measures the amount of information we get from 
the results of some experiment. Because of this, when we 

 



 
design such experiment, we usually want to maximize the 
amount of information we want to get; we wish to 
maximize its entropy function. 
         The foregoing discussion tacitly implies statistical 
independence of the symbols. In fact, the development of 
classical IT is based on the assumption that the source is 
ergodic. A process (in particular, a Markov process [2]) is 
called ergodic if from any state we can reach any other 
state and if, when ∞→t  the system stabilizes to a limit 
distribution regardless of the initial state. In practice, 
however, sources are not ergodic. In [3] Shannon himself 
discusses a set of approximations to the English language 
which he called of first, second and third order 
approaches to independent symbols (letters or spelling 
signs), on the one hand, and of first and second order 
approaches to words, on the other. This two arbitrary 
choices seem to be quite natural: a symbol may be easily 
identified because it exists as a physical entity, whereas a 
word is clearly delimited with blanks between the letters 
of which it is made. There are, of course, further reasons 
of semantic, syntactic or cultural nature which allow for 
easy identification. The selection of terms is, however, 
unfortunate. In Shannon�s example the term �symbol� 
and the term �word� both correspond to what we have 
called, simply, a symbol in the preceding discussion. If 
statistical independence were guaranteed, the election of 
n would be arbitrary. Shannon points out [4]: �Rather 
than proceeding with a structure of a 4-gram,..., η -gram 
it is easier and better to pass, at this point, to consider 
words as units�. And this reflects the non-ergodicity of 
the sources which we must normally face. 
        One of the objectives of this work is to propose and 
establish a method which allows us to replace the 
symbols of classical IT with symbols which, in an 
effective way, display statistical independence such that 
we may extend the concepts of  information and entropy 
without assuming ergodicity. Our thesis is that if the 
symbols of a finite and bounded message are adequately 
selected, these may be mapped to a message generated by 
an ergodic source. 
         The symbols in our discussion are, in general, sets 
of basic units whose length may be arbitrarily defined. 
These sets of units (which we shall call metasymbols) 
must satisfy, in general two desirable characteristics (in 
terms of maximizing compression): 
            a) They must be as large as possible 
            b) They must appear as frequently as possible 
         These two criteria are, in general, mutually 
incompatible. To see why, consider a message consisting 
of a continuous string of �A�s. Notice that the largest 
possible metasymbol is the message itself (taken as a 
whole). On the other hand, the metasymbol with the 
greatest frequency is the letter �A�: the smallest lexical 
unit. 

 We also know that average code length is bounded by the 
entropy of the message. Since we wish to maximize data 
compression, this is, therefore, a third desirable criterion. 
         Attempting to find the set of metasymbols 
complying with all three criteria above is a complex 
optimization task which can be tackled with the proper 
genetic algorithm. If it may be achieved, however, it will 
allow us to consider an alternative source whose entropy 
is minimized. 
         The rest of the paper is developed as follows: in part 
2 we discuss a genetic algorithm to effectively identify 
the metasymbols. In part 3 we discuss some of the 
technical aspects of the implementation of such 
algorithm. In part 4 we outline some of the results 
obtained so far and offer our conclusions. 
 
2. The “Best” Genetic Algorithm 
The optimization problem to be tackled requires an 
optimization algorithm that is demonstrably efficient. In 
the literature several genetic algorithms (GA) have been 
discussed and analyzed. In what follows we make a brief 
account of the known facts about the better known 
variation of a GA (the so-called Simple or Canonical GA 
or CGA), pointing out its advantages and shortcomings. 
Then we discuss a non-traditional algorithm (the so-called 
Vasconcelos GA or VGA) which was designed to 
overcome the CGA�s limitations while retaining its 
desirable characteristics. We recall a study which seems 
to show that the VGA is, in general, far superior to the 
CGA. 
 
2.1 The Simple Genetic Algorithm 
Perhaps the best known GA is the one originally proposed 
by Holland [5] and later popularized by Goldberg [6]. 
This is the so-called Simple GA. The CGA is known to 
possess the following properties: a) It samples certain 
elements (the so-called schemas) in the genomes of its 
population exponentially in direct proportion to the 
adequacy of these elements. That is, it explores the space 
of solutions in a directed way such that the apparently 
better sections in the coded solutions under scrutiny are 
examined preferably. Likewise, it disregards apparently 
undesirable sections of the said code. 2) It explores O(N3) 
such elements for a population of size N during every 
iteration. A CGA, therefore, approaches the ideal strategy 
of exploration/exploitation when faced with dynamic 
problems. These two characteristics explain why a CGA 
approaches a very good solution in a short number of 
iterations under proper conditions. The GA �assembles� 
an ever more complex encoding of the solution from 
smaller and simpler components. 3) It is also known that 
a CGA does not converge to the best solution even in an 
infinite number of steps. But by the simple expedient of 
retaining the best individual up to the last generation the 



GA (now transformed into the eliTist  GA or TGA) does 
converge to the best possible solution given enough time. 
4) The TGA (or the CGA, for that matter) reaches a 
steady state behavior regardless of the way the initial 
population is chosen. This explains why the number of 
individuals in the population is not relevant to the 
convergence properties of the algorithm, although it does, 
indeed, have bearing on its efficiency in reaching such 
convergence.   
         The above mentioned characteristics explain, in 
part, why genetic algorithms have, in practice, become 
such an appealing choice when tackling optimization 
problems, particularly when the said problems are not 
amenable to a closed, mathematically pleasing expression 
and lack some of the frequently required properties (such 
as differentiability, convexity, etc.). But the CGA (or 
TGA) is no panacea. At least two undesirable features 
have been identified which impair the algorithm�s 
performance. 1) Certain fitness functions may supply the 
algorithm with invalid information in terms of 
approaching the desired global optimum. These have 
been called deceptive functions, since they trick the CGA 
into �believing� it is getting closer to the result when it 
may not be so. 2) When identifying the desirable 
�simple� elements which, hopefully, will compose the 
solution when properly combined, the CGA also retains 
some uncalled for sections of code which remain with the 
desired ones. This process of undesirable schema 
traveling along with the host has been called spurious 
correlation and is a major source of inefficiency during 
the CGA�s execution. 
 
2.2 Vasconcelos’ Genetic Algorithm 
In an effort to ameliorate the shortcomings of the CGA 
several variations of a GA have been tried. An interesting 
alternative (for reasons to be discussed shortly) seems to 
be the so-called Vasconcelos� GA or VGA [7]. In the 
VGA proportional selection which gives rise to N new 
individuals from N older ones, is replaced by what in 
evolutionary strategies has been called a λµ +  selection 
strategy, meaning that the new population comprised of 
λ  individuals joins the older population�s µ  individuals 
of which only the N better individuals are retained. 
Furthermore, the N remaining individuals are crossed 
deterministically as follows. All individuals are sorted 
from best to worst. Then the i-th individual is crossed 
with the (N-i+1)-th with probability pc for i=1,...,N/2. The 
apparently contradictory strategy where good performers 
are crossed with the poor ones is explained when one 
considers that elitism is, here, of the strongest kind, i.e. 
only the best N individuals of every generation are 
retained. In this way, the VGA seeks for variety in the 
elements of the genome while, by dynamically disrupting 
the   �good�   schemas   (but   keeping    the   overall best) 

 

dominant, deceptive and spurious schemas are 
minimized. 
         The mechanics of VGA (and, for that matter, almost 
any breed of GA) is a complex affair. Holland�s schema 
analysis is restricted to the CGA. Other authors have tried 
different approaches but, as of to date, no generalized 
theoretical treatment which is able to model a GA with 
arbitrary characteristics has been developed with success. 
In [8] a more pragmatic approach was taken in order to 
establish a general methodology which would allow us to 
establish the relative performance of any two GAs. The 
basic idea is to tackle a set of problems with the 
algorithms we wish to compare and measure the best 
value reached by the algorithm in a predefined number of 
generations for each problem in the set. We may then 
extract the  minimum values probability distribution�s 
main parameters ( µ  and σ ). Once knowing these 
parameters we find a worst case value ( ζ ) by making 

4σµζ += . From Chebyshev�s theorem we know that 
with probability close to 0.95 the minimum values gotten 
from the algorithm in question will be better than ζ . Two 
problems arise in this approach. 1) How to select the 
problems to minimize and 2) How to extract the 
probability distribution�s parameters reliably even in the 
absence of knowledge regarding the problems to be 
minimized. It is common to select a small set of selected 
functions (a suite) which, hopefully, will encompass a 
wide range of characteristics. Rather than picking these 
functions by hand, here problem (1) was solved by 
generating automatically a set of  Walsh polynomials in a 
very large domain. The VGA minimized 10,894 different 
functions whereas the CGA minimized 12,376. All of the 
23,268 functions were generated randomly. Problem (2) 
was solved by determining the sample size from well 
known theorems of probability theory. Basically, the 
mean and standard deviation for a sampling distribution 
of means were calculated ( xµ , xσ ). Uniformity of the 

sampling distribution was determined from a 2χ  
goodness of fit test. Then the original population�s 
parameters may be calculated from xµµ =  and 

xσnσ = . 
 
         Table 1 shows the relative performance of CGA and 
VGA for 30, 50, 100 and 150 generations arrived at from 
the methodology just outlined. 
From Table 1 we see that VGA is O(30%) more efficient 
than CGA as the number of generations increases when 
one considers an optimization process carried on a set of 
unbiased functions. It is pertinent to remark, at this point, 
that other GA breeds were also compared in [8]. Of all 
the different GAs the most efficient was VGA.  
 



Table 1. Relative performance of VGA 
and CGA 

 
Generations 

                          30            50           100            150 

      
CGAζ
VGAζ

     1.08        1.29          1.20           1.267 

 
Keeping this in mind and, in view of the known 
characteristics of the CGA, we have selected VGA as our 
optimization tool. 
 
3. An Algorithm for Metasymbol Identification 
The purpose of the algorithm is to identify structures 
within a data file. These structures will be called 
metasymbols  (MS) or structures or patterns. We assume 
the data in binary, with no particular encoding. 
         Before attempting to describe the fitness function 
we must agree on how to represent a possible solution. 
This we do in what follows. 
         Let N  ≡  Number of elements in the message 
         By �element� we mean a basic unit of data. For 
instance, if we consider bytes as basic units of data, then a 
file with 1024 bytes will have 1024 elements; if, on the 
other hand, we consider nibbles, the same file will have 
2048 elements, an so on. 
 
  P ≡  Number of possible patterns 
  iP ≡  the i-th pattern 

   1-Pi0 ≤≤  
 
 The algorithm will try to identify structures 
within the data. Some will be found more than once. By 
convention we will not allow more than P=  N/4  
patterns.  
         We assume that structures appearing for the first 
time in the data will be encoded such that its first bit is a 
�0�, whereas the second and successive apparitions of 
such structure will be encoded with a �1� in its first 
position. For example, if N = 32, the first occurrence of 
pattern �3� will be encoded as 0 011; the second 
occurrence (and all others) will be encoded as 1 011. 
Therefore, the number of bits per pattern (L) is given by: 
 

  )2log(1 −+= NL                          (4) 
Example: 

N = 128 
log N = 7 

∴  

 
The length of the genome where this information will be  

stored is given by: 
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For example, if N = 256, G = 7 x 256 = 1,792. 
         We illustrate with N=64. Assume we have the 
following string: 
 

 
We wish to find the patterns as outlined above. For 
convenience, we express it in a two-dimensional 8X8 
matrix as shown in figure 1. 
 

 
Figure 1. A bidimensional message 

 
We identify 7 patterns including the null pattern. By 
convention the absence of a pattern (the empty or null 
pattern) will be denoted by M0.  
         The patterns may be expressed as the coordinates of 
the first element, followed by the number of empty 
squares (blanks) between the i-th and the (i+1)-st 
elements. 
         For instance, the first pattern is {ABCDE}. Its is 
defined by: {(1,1):3,4,4,12}. This pattern (pattern 1) is 
highlighted in figure 2. 
 

 
Figure 2.First Occurrence of Pattern 1 
 
Pattern 1 also appears in the cells starting with 
coordinates   (1,4)  and  (1,7).  The  three  occurrences  of 
matrix, for instance, will be encoded as: 



pattern 1 are shown in figure 3.  The first apparition of 
pattern 1 is the �master� template, whereas the second 
and subsequent ones are the �slave� templates. We call 
them M1 and S1, respectively. Their coordinate 
description would be, {(1,1),(1,4),(1,7):3,4,4,12}. 
 

 
Figure 3. All Occurrences of Pattern 1 

 
The format we use to describe the master and slave 
patterns is as follows: {Mi,Si,Si,...,Si:(b1,b2,...,bN)}. Where 
�M� is the pair of initial coordinates of the master; Si is 
the pair of coordinates of slaves i; bi are the blanks (left to 
right) between two successive symbols in the pattern. The 
set of patterns describing the message of figure 1 is, 
therefore, as follows: 
 
Pattern 1 (ABCDE): {(1,1),(1,4),(1,7):3,4,4,12} 
Pattern 2 (1234): {(1,2), (5,3): 3, 7, 14 } 
Pattern 3 (VWXY): {(2,1), (5,1), (5,4), (4,8): 7, 7, 1} 
Pattern 4 (ABG): {(3,3), (7,5) : 2, 3} 
Pattern 5 (12): {(1,3), (6,2): 20} 
Pattern 6 (XY): {(5,5), (6,5), (8,2): 0} 
 
Those symbols not included in any of the patterns above 
are clustered in �pattern� M0. Calling the master pattern 
of metasymbol i Mi and all its slaves Si we may represent 
the full message as shown in figure 4. 
 

 
Figure 4. Master-Slave Mapping 

 
Now we are able to encode the text in terms of the 
patterns determined above. From (4) we have that L=5. 
Now we encode masters with a 0 in its first bit; slaves 
with a 1, as per our conventions. The first line in the  

00001,00010,00101,10001,00001,00010,10001,10001 
Likewise, the sixth line of the matrix, for instance, will be 
encoded as: 

10011,10101,00000,10011,10110,10110,10010,10011 
We must remark that although the proposed scheme does, 
indeed, allow us to encode any given pattern, the 
information contained herein is incomplete. For notice 
that the genome encodes the structure of the pattern, but 
does nothing to include the contents in such a pattern. 
Therefore, in this sense a genome is simply a mask which 
is to be superimposed on the data to make it meaningful. 
         Once we are able to encode a pattern as outlined 
above, we are able to envision a genetic optimization 
process. For any possible set of patterns (with the 
conventions we assumed) may be easily expressed. 
Hence, the VGA will be able to search for the best 
individual. And the best individual becomes the best 
alternative to metasymbol identification, provided we find 
a precise measure of  adequacy (fitness). 
         The fitness function we are looking for is the one 
that minimizes the code length for the symbols from the 
source. It is a well known fact from IT that the minimum 
code for a source is lower bounded by the entropy. 
Huffman codes [9] achieve the best practical block code 
approach to the problem by assigning the smallest codes 
to those having the highest probability; the longest to the 
ones having the smallest probability. In this context, we 
may compare the best possible encoding from the original 
data and the one composed of metasymbols. 
         We may now calculate the entropy of the data if we 
consider each pattern to be an independent symbol. In 
that case, the entropy of the original source (S) for the 
example above is  

H(S) = 4.2141 
         On the other hand, the entropy of the modified 
(metasymbolic) source S� for the same example is 

H(S�) = 3.6714 
         Complementarily, to achieve the best encoding we 
must also supply the information regarding the structure 
and content of the metasymbols. This need detracts from 
the simplicity apparent in the example above. For we 
need to provide the receiver with the way to decode each 
one of the metasymbols. 
         But this fact allows us to complete the definition of 
the fitness function, as follows. 
         The best solution to the problem is the one which 
identifies the metasymbols that: 
            a) Maximize the length of the metasymbols. 
            b) Maximize the number of occurrences of the 
metasymbols. 
            c) Minimize the information needed to describe 
the metasymbols 
If we are able to implement this fitness criteria (which we 
shall refer to as msf) we will attain the best possible  
theoretical limits. But this problem�s complexity grows 



compression ratio and the metasymbolic source will 
appear ergodic (pseudo-ergodic) to the coding scheme. 
         The three conditions above may be synthetically 
rephrased as follows: 
           msf: Find the set of metasymbols which minimizes  
 the entropy of the pseudo-ergodic source while 
simultaneously minimizing the need for  metasymbolic 
structural data. 
 
3.1 A Genetic Repairing Algorithm 
The fitness function msf may be easily programmed to 
yield better individuals and allow for the VGA to search 
for better solutions. But there is a technical issue that 
must yet be considered. 
         When crossover and mutation are performed, 
metasymbolic valid templates may be transformed into 
non-valid ones. In order to solve this situation we 
implemented a repair algorithm which we have used 
successfully in the past [10]. In essence, it consists of the 
following. 
         a) If the individual under consideration is valid, 
leave it as is. 
         b) Otherwise, randomly change the invalid 
structural and informational characteristics to make the 
metasymbol under consideration a valid one. 
 
         In order to achieve the reparation of invalid 
genomes one has to take several decisions regarding what 
is and what is not acceptable. The details of such 
considerations are rather involved and space does not 
allow us to describe them here. Suffice then to say that 
this scheme works adequately. As has been proved before 
(and here past experience is reinforced) the genetic 
algorithm �learns� to diminish the number of invalid 
individuals. Reparation, in this context, is equivalent to a 
special mutation operator which only yields valid 
individuals. 
         Once msf has been defined and the rules of 
reparation are established, the VGA provides for an 
efficient tool for searching and finding the metasymbols 
yielding a near optimal pseudo-ergodic source, in the 
sense that symbolic independence is retained and coding 
approaches an ideal source whence all the metasymbols 
are independent. 
 
4. Conclusions 
The experiments conducted so far with the outlined 
methodology have yielded acceptable results. The 
compression we have achieved is close to the one we 
would theoretically expect. However, these preliminary 
tests have not yet addressed large volumes of information, 
nor have they considered various original sources. As of 
today, our analysis has focused, basically, on texts, both 
in English and Spanish. In the cases considered we have 
achieved compression rates between 85 � 95% of the  

more than exponentially and we have to consider the 
possibility of excessive execution times when tackling 
real world sized problems. 
         A next step in the development and testing of the 
purported scheme is to test it with radically different sets 
of data. For instance, image files, audio files and video 
files. If, as expected, the method reaches similar levels of 
efficiency, we will have further evidence of its validity. 
On the other hand, it is to be expected that we find 
variations in the compression rates and steps will be taken 
to consider the pertinent modifications if such were the 
case. 
         An interesting line which we are also pursuing has 
to do with the possibility of not achieving fully optimal 
results but to apply predictive encoding as a post-process. 
The rationale behind such post-process is to consider the 
possibility of being unable to attain optimality but 
ameliorating the inherent disadvantages by compressing 
with a different method. Paradoxically, this post-process 
will only make sense if we are unable to achieve near full 
ergodicity. 
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