
Efficient Compression from Non-ergodic Sources with Genetic Algorithms

Angel Fernando Kuri-Morales
Instituto Tecnológico Autónomo de México

Río Hondo No. 1, México D.F.
akuri@itam.mx

Abstract

Several lossless data compression schemes have been
proposed over the past years. Since Shannon developed
information theory in his seminal paper, however, the
problem of data compression has hinged (even though not
always explicitly) on the consideration of an ergodic
source. In dealing with such sources one has to cope with
the problem of defining a priori the minimum sized
symbol. The designer, therefore, is faced with the
necessity of choosing beforehand the characteristics of
the basic underlying element with which he or she is to
attempt data compression. In this paper we address the
problem of finding the characteristics of the basic
symbols to consider in information treatment without
assuming the form of such symbols in the data source. In
so doing we expect to achieve a pseudo-ergodic behavior
of the source. Then we are able to exploit the
characteristics of such sources. Finding the basic
elements (which we call “metasymbols”) is a complex
(NP complete) optimization task. Therefore, we make use
of a non-traditional Genetic Algorithm (VGA) which has
been shown to have excellent performance, to find the
metasymbols. In this paper we discuss the problem, the
proposed methodology, some of the results obtained so
far and point to future lines of research.

1. Introduction
In the publication in 1948 [1] of Shannon�s original paper
on information theory (IT) the concept of information
attached to a symbol stemming from a source assumed
unknown but from which it is possible to estimate its
probability was born. We may, then, define the
information associated to such symbol as

)ilog(p)iI(s −= (1)
where si denotes the i-th symbol and pi denotes the
probability that the symbol is output from the source;
logarithms are assumed base 2. This definition is
appealing in that it satisfies two intuitive notions about
information: First, it assigns greater information to that
which is more unexpected, that is, something not

 expected �tells� us more than something which is
frequent. Second, it corresponds to our idea that
information must be additive; that is, the information of
two symbols should be the same as the information of
each taken separately:

)]2p1[log(p
)2log(p-)1log(p

)2s,1I(s)2I(s)1I(s

−=
−=

=+
 (2)

This, clearly, shows the two probabilities as a product and
the amount of information as an addition. This is an
engineering definition based in probabilities and not one
based in the meaning of the symbols for a human receiver.
It is easy (and common) to confuse the knowledge
associated to the process of interpretation of the symbols
with the information they carry.
 On the other hand, information defined in such way
is also consistent in the sense that it restricts how we
define a symbol. Assume, without loss of generality, that
when conveying information we imply some sort of
binary encoding. In this case, IT allows us to define
symbols as n-ary sets of bits, where n is arbitrary. For
example, if n1 = 4, then the alphabet corresponds to 16
bits and there are 16 probabilities: one for each one of the
symbols, with their corresponding information. Now let
us assume that we decide to take 8 bits per symbol. In this
case (n2 = 8) we have 256 symbols with the corresponding
probabilities and information. However, in view of (2),
the information associated to pairs of symbols for n1 is the
same as the one associated to individual symbols for n2.
 A basic concept associated to the previous
definitions is that of the average information for a given
source. This quantity is called the entropy and is
expressed as

∑
=

=
q

1i
)log(-H(S) ipip (3)

It is important to remark that a phrase such as �Let us
consider the entropy of the source...� is meaningless
unless we include a model of such source. The entropy
function measures the amount of information we get from
the results of some experiment. Because of this, when we

design such experiment, we usually want to maximize the
amount of information we want to get; we wish to
maximize its entropy function.
 The foregoing discussion tacitly implies statistical
independence of the symbols. In fact, the development of
classical IT is based on the assumption that the source is
ergodic. A process (in particular, a Markov process [2]) is
called ergodic if from any state we can reach any other
state and if, when ∞→t the system stabilizes to a limit
distribution regardless of the initial state. In practice,
however, sources are not ergodic. In [3] Shannon himself
discusses a set of approximations to the English language
which he called of first, second and third order
approaches to independent symbols (letters or spelling
signs), on the one hand, and of first and second order
approaches to words, on the other. This two arbitrary
choices seem to be quite natural: a symbol may be easily
identified because it exists as a physical entity, whereas a
word is clearly delimited with blanks between the letters
of which it is made. There are, of course, further reasons
of semantic, syntactic or cultural nature which allow for
easy identification. The selection of terms is, however,
unfortunate. In Shannon�s example the term �symbol�
and the term �word� both correspond to what we have
called, simply, a symbol in the preceding discussion. If
statistical independence were guaranteed, the election of
n would be arbitrary. Shannon points out [4]: �Rather
than proceeding with a structure of a 4-gram,..., η -gram
it is easier and better to pass, at this point, to consider
words as units�. And this reflects the non-ergodicity of
the sources which we must normally face.
 One of the objectives of this work is to propose and
establish a method which allows us to replace the
symbols of classical IT with symbols which, in an
effective way, display statistical independence such that
we may extend the concepts of information and entropy
without assuming ergodicity. Our thesis is that if the
symbols of a finite and bounded message are adequately
selected, these may be mapped to a message generated by
an ergodic source.
 The symbols in our discussion are, in general, sets
of basic units whose length may be arbitrarily defined.
These sets of units (which we shall call metasymbols)
must satisfy, in general two desirable characteristics (in
terms of maximizing compression):
 a) They must be as large as possible
 b) They must appear as frequently as possible
 These two criteria are, in general, mutually
incompatible. To see why, consider a message consisting
of a continuous string of �A�s. Notice that the largest
possible metasymbol is the message itself (taken as a
whole). On the other hand, the metasymbol with the
greatest frequency is the letter �A�: the smallest lexical
unit.

 We also know that average code length is bounded by the
entropy of the message. Since we wish to maximize data
compression, this is, therefore, a third desirable criterion.
 Attempting to find the set of metasymbols
complying with all three criteria above is a complex
optimization task which can be tackled with the proper
genetic algorithm. If it may be achieved, however, it will
allow us to consider an alternative source whose entropy
is minimized.
 The rest of the paper is developed as follows: in part
2 we discuss a genetic algorithm to effectively identify
the metasymbols. In part 3 we discuss some of the
technical aspects of the implementation of such
algorithm. In part 4 we outline some of the results
obtained so far and offer our conclusions.

2. The “Best” Genetic Algorithm
The optimization problem to be tackled requires an
optimization algorithm that is demonstrably efficient. In
the literature several genetic algorithms (GA) have been
discussed and analyzed. In what follows we make a brief
account of the known facts about the better known
variation of a GA (the so-called Simple or Canonical GA
or CGA), pointing out its advantages and shortcomings.
Then we discuss a non-traditional algorithm (the so-called
Vasconcelos GA or VGA) which was designed to
overcome the CGA�s limitations while retaining its
desirable characteristics. We recall a study which seems
to show that the VGA is, in general, far superior to the
CGA.

2.1 The Simple Genetic Algorithm
Perhaps the best known GA is the one originally proposed
by Holland [5] and later popularized by Goldberg [6].
This is the so-called Simple GA. The CGA is known to
possess the following properties: a) It samples certain
elements (the so-called schemas) in the genomes of its
population exponentially in direct proportion to the
adequacy of these elements. That is, it explores the space
of solutions in a directed way such that the apparently
better sections in the coded solutions under scrutiny are
examined preferably. Likewise, it disregards apparently
undesirable sections of the said code. 2) It explores O(N3)
such elements for a population of size N during every
iteration. A CGA, therefore, approaches the ideal strategy
of exploration/exploitation when faced with dynamic
problems. These two characteristics explain why a CGA
approaches a very good solution in a short number of
iterations under proper conditions. The GA �assembles�
an ever more complex encoding of the solution from
smaller and simpler components. 3) It is also known that
a CGA does not converge to the best solution even in an
infinite number of steps. But by the simple expedient of
retaining the best individual up to the last generation the

GA (now transformed into the eliTist GA or TGA) does
converge to the best possible solution given enough time.
4) The TGA (or the CGA, for that matter) reaches a
steady state behavior regardless of the way the initial
population is chosen. This explains why the number of
individuals in the population is not relevant to the
convergence properties of the algorithm, although it does,
indeed, have bearing on its efficiency in reaching such
convergence.
 The above mentioned characteristics explain, in
part, why genetic algorithms have, in practice, become
such an appealing choice when tackling optimization
problems, particularly when the said problems are not
amenable to a closed, mathematically pleasing expression
and lack some of the frequently required properties (such
as differentiability, convexity, etc.). But the CGA (or
TGA) is no panacea. At least two undesirable features
have been identified which impair the algorithm�s
performance. 1) Certain fitness functions may supply the
algorithm with invalid information in terms of
approaching the desired global optimum. These have
been called deceptive functions, since they trick the CGA
into �believing� it is getting closer to the result when it
may not be so. 2) When identifying the desirable
�simple� elements which, hopefully, will compose the
solution when properly combined, the CGA also retains
some uncalled for sections of code which remain with the
desired ones. This process of undesirable schema
traveling along with the host has been called spurious
correlation and is a major source of inefficiency during
the CGA�s execution.

2.2 Vasconcelos’ Genetic Algorithm
In an effort to ameliorate the shortcomings of the CGA
several variations of a GA have been tried. An interesting
alternative (for reasons to be discussed shortly) seems to
be the so-called Vasconcelos� GA or VGA [7]. In the
VGA proportional selection which gives rise to N new
individuals from N older ones, is replaced by what in
evolutionary strategies has been called a λµ + selection
strategy, meaning that the new population comprised of
λ individuals joins the older population�s µ individuals
of which only the N better individuals are retained.
Furthermore, the N remaining individuals are crossed
deterministically as follows. All individuals are sorted
from best to worst. Then the i-th individual is crossed
with the (N-i+1)-th with probability pc for i=1,...,N/2. The
apparently contradictory strategy where good performers
are crossed with the poor ones is explained when one
considers that elitism is, here, of the strongest kind, i.e.
only the best N individuals of every generation are
retained. In this way, the VGA seeks for variety in the
elements of the genome while, by dynamically disrupting
the �good� schemas (but keeping the overall best)

dominant, deceptive and spurious schemas are
minimized.
 The mechanics of VGA (and, for that matter, almost
any breed of GA) is a complex affair. Holland�s schema
analysis is restricted to the CGA. Other authors have tried
different approaches but, as of to date, no generalized
theoretical treatment which is able to model a GA with
arbitrary characteristics has been developed with success.
In [8] a more pragmatic approach was taken in order to
establish a general methodology which would allow us to
establish the relative performance of any two GAs. The
basic idea is to tackle a set of problems with the
algorithms we wish to compare and measure the best
value reached by the algorithm in a predefined number of
generations for each problem in the set. We may then
extract the minimum values probability distribution�s
main parameters (µ and σ). Once knowing these
parameters we find a worst case value (ζ) by making

4σµζ += . From Chebyshev�s theorem we know that
with probability close to 0.95 the minimum values gotten
from the algorithm in question will be better than ζ . Two
problems arise in this approach. 1) How to select the
problems to minimize and 2) How to extract the
probability distribution�s parameters reliably even in the
absence of knowledge regarding the problems to be
minimized. It is common to select a small set of selected
functions (a suite) which, hopefully, will encompass a
wide range of characteristics. Rather than picking these
functions by hand, here problem (1) was solved by
generating automatically a set of Walsh polynomials in a
very large domain. The VGA minimized 10,894 different
functions whereas the CGA minimized 12,376. All of the
23,268 functions were generated randomly. Problem (2)
was solved by determining the sample size from well
known theorems of probability theory. Basically, the
mean and standard deviation for a sampling distribution
of means were calculated (xµ , xσ). Uniformity of the

sampling distribution was determined from a 2χ
goodness of fit test. Then the original population�s
parameters may be calculated from xµµ = and

xσnσ = .

 Table 1 shows the relative performance of CGA and
VGA for 30, 50, 100 and 150 generations arrived at from
the methodology just outlined.
From Table 1 we see that VGA is O(30%) more efficient
than CGA as the number of generations increases when
one considers an optimization process carried on a set of
unbiased functions. It is pertinent to remark, at this point,
that other GA breeds were also compared in [8]. Of all
the different GAs the most efficient was VGA.

Table 1. Relative performance of VGA
and CGA

Generations

 30 50 100 150

CGAζ
VGAζ

 1.08 1.29 1.20 1.267

Keeping this in mind and, in view of the known
characteristics of the CGA, we have selected VGA as our
optimization tool.

3. An Algorithm for Metasymbol Identification
The purpose of the algorithm is to identify structures
within a data file. These structures will be called
metasymbols (MS) or structures or patterns. We assume
the data in binary, with no particular encoding.
 Before attempting to describe the fitness function
we must agree on how to represent a possible solution.
This we do in what follows.
 Let N ≡ Number of elements in the message
 By �element� we mean a basic unit of data. For
instance, if we consider bytes as basic units of data, then a
file with 1024 bytes will have 1024 elements; if, on the
other hand, we consider nibbles, the same file will have
2048 elements, an so on.

 P ≡ Number of possible patterns
 iP ≡ the i-th pattern

 1-Pi0 ≤≤

 The algorithm will try to identify structures
within the data. Some will be found more than once. By
convention we will not allow more than P= N/4
patterns.
 We assume that structures appearing for the first
time in the data will be encoded such that its first bit is a
�0�, whereas the second and successive apparitions of
such structure will be encoded with a �1� in its first
position. For example, if N = 32, the first occurrence of
pattern �3� will be encoded as 0 011; the second
occurrence (and all others) will be encoded as 1 011.
Therefore, the number of bits per pattern (L) is given by:

)2log(1 −+= NL (4)
Example:

N = 128
log N = 7

∴

The length of the genome where this information will be

stored is given by:
 ()

 ()1logNNG

N2logN1NLG

−=

×−+=×=

For example, if N = 256, G = 7 x 256 = 1,792.
 We illustrate with N=64. Assume we have the
following string:

We wish to find the patterns as outlined above. For
convenience, we express it in a two-dimensional 8X8
matrix as shown in figure 1.

Figure 1. A bidimensional message

We identify 7 patterns including the null pattern. By
convention the absence of a pattern (the empty or null
pattern) will be denoted by M0.
 The patterns may be expressed as the coordinates of
the first element, followed by the number of empty
squares (blanks) between the i-th and the (i+1)-st
elements.
 For instance, the first pattern is {ABCDE}. Its is
defined by: {(1,1):3,4,4,12}. This pattern (pattern 1) is
highlighted in figure 2.

Figure 2.First Occurrence of Pattern 1

Pattern 1 also appears in the cells starting with
coordinates (1,4) and (1,7). The three occurrences of
matrix, for instance, will be encoded as:

pattern 1 are shown in figure 3. The first apparition of
pattern 1 is the �master� template, whereas the second
and subsequent ones are the �slave� templates. We call
them M1 and S1, respectively. Their coordinate
description would be, {(1,1),(1,4),(1,7):3,4,4,12}.

Figure 3. All Occurrences of Pattern 1

The format we use to describe the master and slave
patterns is as follows: {Mi,Si,Si,...,Si:(b1,b2,...,bN)}. Where
�M� is the pair of initial coordinates of the master; Si is
the pair of coordinates of slaves i; bi are the blanks (left to
right) between two successive symbols in the pattern. The
set of patterns describing the message of figure 1 is,
therefore, as follows:

Pattern 1 (ABCDE): {(1,1),(1,4),(1,7):3,4,4,12}
Pattern 2 (1234): {(1,2), (5,3): 3, 7, 14 }
Pattern 3 (VWXY): {(2,1), (5,1), (5,4), (4,8): 7, 7, 1}
Pattern 4 (ABG): {(3,3), (7,5) : 2, 3}
Pattern 5 (12): {(1,3), (6,2): 20}
Pattern 6 (XY): {(5,5), (6,5), (8,2): 0}

Those symbols not included in any of the patterns above
are clustered in �pattern� M0. Calling the master pattern
of metasymbol i Mi and all its slaves Si we may represent
the full message as shown in figure 4.

Figure 4. Master-Slave Mapping

Now we are able to encode the text in terms of the
patterns determined above. From (4) we have that L=5.
Now we encode masters with a 0 in its first bit; slaves
with a 1, as per our conventions. The first line in the

00001,00010,00101,10001,00001,00010,10001,10001
Likewise, the sixth line of the matrix, for instance, will be
encoded as:

10011,10101,00000,10011,10110,10110,10010,10011
We must remark that although the proposed scheme does,
indeed, allow us to encode any given pattern, the
information contained herein is incomplete. For notice
that the genome encodes the structure of the pattern, but
does nothing to include the contents in such a pattern.
Therefore, in this sense a genome is simply a mask which
is to be superimposed on the data to make it meaningful.
 Once we are able to encode a pattern as outlined
above, we are able to envision a genetic optimization
process. For any possible set of patterns (with the
conventions we assumed) may be easily expressed.
Hence, the VGA will be able to search for the best
individual. And the best individual becomes the best
alternative to metasymbol identification, provided we find
a precise measure of adequacy (fitness).
 The fitness function we are looking for is the one
that minimizes the code length for the symbols from the
source. It is a well known fact from IT that the minimum
code for a source is lower bounded by the entropy.
Huffman codes [9] achieve the best practical block code
approach to the problem by assigning the smallest codes
to those having the highest probability; the longest to the
ones having the smallest probability. In this context, we
may compare the best possible encoding from the original
data and the one composed of metasymbols.
 We may now calculate the entropy of the data if we
consider each pattern to be an independent symbol. In
that case, the entropy of the original source (S) for the
example above is

H(S) = 4.2141
 On the other hand, the entropy of the modified
(metasymbolic) source S� for the same example is

H(S�) = 3.6714
 Complementarily, to achieve the best encoding we
must also supply the information regarding the structure
and content of the metasymbols. This need detracts from
the simplicity apparent in the example above. For we
need to provide the receiver with the way to decode each
one of the metasymbols.
 But this fact allows us to complete the definition of
the fitness function, as follows.
 The best solution to the problem is the one which
identifies the metasymbols that:
 a) Maximize the length of the metasymbols.
 b) Maximize the number of occurrences of the
metasymbols.
 c) Minimize the information needed to describe
the metasymbols
If we are able to implement this fitness criteria (which we
shall refer to as msf) we will attain the best possible
theoretical limits. But this problem�s complexity grows

compression ratio and the metasymbolic source will
appear ergodic (pseudo-ergodic) to the coding scheme.
 The three conditions above may be synthetically
rephrased as follows:
 msf: Find the set of metasymbols which minimizes
 the entropy of the pseudo-ergodic source while
simultaneously minimizing the need for metasymbolic
structural data.

3.1 A Genetic Repairing Algorithm
The fitness function msf may be easily programmed to
yield better individuals and allow for the VGA to search
for better solutions. But there is a technical issue that
must yet be considered.
 When crossover and mutation are performed,
metasymbolic valid templates may be transformed into
non-valid ones. In order to solve this situation we
implemented a repair algorithm which we have used
successfully in the past [10]. In essence, it consists of the
following.
 a) If the individual under consideration is valid,
leave it as is.
 b) Otherwise, randomly change the invalid
structural and informational characteristics to make the
metasymbol under consideration a valid one.

 In order to achieve the reparation of invalid
genomes one has to take several decisions regarding what
is and what is not acceptable. The details of such
considerations are rather involved and space does not
allow us to describe them here. Suffice then to say that
this scheme works adequately. As has been proved before
(and here past experience is reinforced) the genetic
algorithm �learns� to diminish the number of invalid
individuals. Reparation, in this context, is equivalent to a
special mutation operator which only yields valid
individuals.
 Once msf has been defined and the rules of
reparation are established, the VGA provides for an
efficient tool for searching and finding the metasymbols
yielding a near optimal pseudo-ergodic source, in the
sense that symbolic independence is retained and coding
approaches an ideal source whence all the metasymbols
are independent.

4. Conclusions
The experiments conducted so far with the outlined
methodology have yielded acceptable results. The
compression we have achieved is close to the one we
would theoretically expect. However, these preliminary
tests have not yet addressed large volumes of information,
nor have they considered various original sources. As of
today, our analysis has focused, basically, on texts, both
in English and Spanish. In the cases considered we have
achieved compression rates between 85 � 95% of the

more than exponentially and we have to consider the
possibility of excessive execution times when tackling
real world sized problems.
 A next step in the development and testing of the
purported scheme is to test it with radically different sets
of data. For instance, image files, audio files and video
files. If, as expected, the method reaches similar levels of
efficiency, we will have further evidence of its validity.
On the other hand, it is to be expected that we find
variations in the compression rates and steps will be taken
to consider the pertinent modifications if such were the
case.
 An interesting line which we are also pursuing has
to do with the possibility of not achieving fully optimal
results but to apply predictive encoding as a post-process.
The rationale behind such post-process is to consider the
possibility of being unable to attain optimality but
ameliorating the inherent disadvantages by compressing
with a different method. Paradoxically, this post-process
will only make sense if we are unable to achieve near full
ergodicity.

Acknowledgments
We wish to acknowledge the support of the authorities of
the Instituto Tecnológico Autónomo de México. The
reported research has been partly supported by
CONACYT grant 38153-A.

References
[1] Shannon, C. E., A Mathematical Theory of Computation,
Bell. Sys. Tech. J., 27 (1948): 379-423, 623-656.
[2] Hamming, R.W., Coding and Information Theory, Prentice-
Hall, 1980, pp. 80-89.
[3] Shannon, C., op. cit., p.9.
[4] Shannon, C., Teoría Matemática de la Comunicación,
Publicaciones Telecomex, Octubre de 1976, p. III.
[5] Holland, J. H., Adaptation in Natural and Artificial Systems,
MIT Press, 1992.
[6] Goldberg, D. E., Genetic Algorithms in Optimization and
Machine Learning, Addison-Wesley, 1989.
[7] Kuri, A., A Comprehensive Approach to Genetic Algorithms
in Optimization and Learning, Vol. 1: Foundations, Ed.
Politécnico, 1999, pp. 211-219.
[8] Kuri, A., A Methodology for the Statistical Characterization
of Genetic Algorithms, Lecture Notes in Artificial Intelligence,
LNAI 2313, Springer-Verlag, 2002, pp. 80-88.
[9] Pierce, J. R., An Introduction to Information Theory, 2nd. ed.,
Dover, 1980, pp. 94-97.
[10] Kuri, A., A Comprehensive Approach to Genetic
Algorithms in Optimization and Learning, Vol. 2: Applications,
to be published, pp. 88-93.

