
Pattern Recognition Via Vasconcelos’ Genetic 
Algorithm 

Angel Kuri-Morales 

Instituto Tecnológico Autónomo de México.  
Río Hondo No.1, Tizapán San Angel, C.P. 01000, MÉXICO.  

akuri@itam.mx 

Abstract. In this paper we describe a heuristic approach to the problem of 
identifying a pattern embedded within a figure from a predefined set of patterns 
via the utilization of a genetic algorithm (GA). By applying this GA we are able 
to recognize a set of simple figures independently of scale, translation and 
rotation. We discuss the fact that this GA is, purportedly, the best among a set 
of alternatives; a fact which was previously proven appealing to statistical 
techniques. We describe the general process, the special type of genetic 
algorithm utilized, report some results obtained from a test set and we discuss 
the aforementioned results and we comment on these. We also point out some 
possible extensions and future directions 

1 Introduction 

In [1] we reported on the application of the so-called Eclectic Genetic Algorithms 
applied to the problem of pattern recognition. In this paper we offer new insights via 
the so-called Vasconcelos� GA. The problem of pattern recognition has long been 
considered to be a topic of particular interest in many areas of Computer Science. It 
has been tackled in many ways throughout a considerably large span of time and, as 
of today, it remains a subject of continuous study. 

In this paper we report yet another method to solve a particular problem of pattern 
recognition. This problem may be described as follows: 

a) We are given a certain graphical figure, possibly composed of an unknown non-
linear combination of simpler (component) graphical figures. For our discussion we 
shall call this figure the master figure or, simply, the master. 

b) We are given a set of "candidate" figures, which we are interested to discover 
within the master if any of these does indeed "lie" within it. What we mean when we 
say that a figure lies within another figure is, in fact, central to our method and we 
shall dwell upon this matter in what follows. We shall call these possibly embedded 
figures the patterns. 

c) We would like to ascertain, with a given degree of certainty, whether one or 
several of the patterns lie within the master. 



1.1 General Process 

In figure 1, a set of patterns is shown surrounding a master. The main problem of 
defining when a pattern lies within a master is interesting only when such relation is 
not direct. That is, it is relatively simple to find, say, a square within a master if such a 
square is one of the patterns on a 1 to 1 scale, in the same position and with the same 
inclination. Here, however, we are looking for a much more general case. Namely, we 
impose upon our method, the task of identifying a pattern in the master even if the 
pattern is found on a different scale, a different position and a different inclination than 
the ones in the pattern. We shall define, therefore, three operators on the pattern: 

1. A scale operator, which we denote by f)σ(s, , where s is the scale factor and f is 
the figure being scaled. 

   

 
Fig. 1. A Set of Patterns and a Master. 

2. A rotation operator, which we denote by f)ρ(r, , where r is the rotation angle, 
and f is the figure being rotated. 

3. A translation operator which we denote by f),t2,t1τ( , where t1, t2 are the 
translations on the x and y axis respectively and f is the figure being translated.  

Henceforth, a pattern is mapped an arbitrarily selected number of times under 
scaling, rotation and translation into a derived pattern or descendant. That is, from 
every pattern we extract a family of descendants which arise from a process of 
repeated application of τandρσ, . 

 The i-th descendant ( (f)δi ) is denoted by 

f)]},ti2,ti1(τi,ri[ρi,si{σi=(f)δi  (1) 

where the operators are successively applied to a figure f. 
The rationale behind this strategy is simple: under the assumption that the possible 

number of configurations is sufficiently large, we settle with a sample of the 
configuration space in the hope of capturing the essence of the pattern in all its 
possible states where by "state" we mean any one of the possible combinations of s, r, 
t1, t2. Clearly the number of possible states is sufficiently large so that an exhaustive 
enumeration of these is impractical. The size of the sample is largely determined, 
therefore, by practical considerations such as the amount of information contained in 



     

the figure, the speed of the computer where the process of identification is performed 
and the amount of memory at our disposal. We denote the family of descendants for a 
given figure f by φ(f) . 

Once the samples (one per pattern) are obtained, we attempt to characterize the 
relationship between the i-th pattern and the master by minimizing a norm which 
should reflect the distance between the master and the pattern. If the said distance is 
minimum we shall accept the fact that the pattern is embedded within the master. This 
is what we mean when we say that a pattern lies within a figure. We shall accept that 
pattern f is found in the master m if the distance between f and m is relatively small. 
We could have, of course, attempted to minimize such distance from a "traditional" 
norm such as L1, L2 of ∞L . Indeed, such a scheme was applied in [2] where we 

attempted to minimize the said distance in ∞L . There we recognized a set of fuzzy 
alphabetic (i.e. A, B, ..., Z, ...) characters with a neural network and with a scheme 
similar to the one reported here. There, however, the patterns were unique. That is, the 
master consisted of only one of the fuzzified characters and the method performed 
unsatisfactorily when several patterns were put together. Our conclusion was that the 
problem lied in the fact that φ(f)  was not sufficiently rich and/or the master was too 
complex. 

In order to overcome the limitations outlined above we felt it necessary to enrich 
φ  and to adopt an ad hoc distance norm. To achieve these two goals while retaining 
the essence of the method we appealed to a genetic algorithm. 

In the algorithm a set of random patterns (each of which will act as a probe π ) is 
generated. Thus, information is maximized to begin with. That is, in terms of a Fourier 
decomposition no harmonics of the pattern are left out. Then the distance between the 
test pattern and both φ  and the master is minimized simultaneously. To do this:  

a) The average distance δ∆  between the probe (π ) and each of the iδ  is calculated 

from )δi-(π
iN

1
=∆δ ∑ . 

b) The distance m∆  between π  and the master is calculated from m = - m∆ π . 

c) A mutual distance ∆δm
 is derived from )∆+∆(

2

1
=∆ mδδm

. 

The genetic algorithm receives as its initial population, therefore, a set of random 
patterns. Its fitness function is then the mutual distance ∆ mδ , which it tries to minimize. 
The population, thereafter, evolves to a fittest individual, which is constantly closer to 
both the set of descendants and the master, thereby establishing an informational 
meaningful link between the particular sample from which φ(f)  originally arose and the 
master. In order to calculate the above mentioned distances the system is fed a set of 
figures in compressed (PCX) format. This set comprises both the master and the patterns. 
As a second step, the iδ  are generated. Once having these samples (the arguments of the 
operators are generated randomly) the genetic string of the master and the descendants is 
composed of the a concatenation of the rows of the pattern (1 bit per pixel). The distance 



between probe and descendants, on the one hand, and probe and master, on the other, is 
trivially calculated by counting those positions where the values agree. In our test we 
only considered black and white images. Therefore, an empty space is a "1", whereas a 
filled space is a "0". It should be clear that the genetic algorithm is basically measuring 
the information content coincidence in the probe vs. the descendants and vs. the master. 
It should also be clear that the fact that pattern information is state independent given a 
properly selected size of the sample. That is, regardless of where the pattern may be 
within the space of the master and regardless of its position and/or angle of inclination 
relative to the master, as long as the information of the pattern remains a match will be 
found, that is, as long as the pattern is not deformed. 

2 Genetic Algorithm  

For those familiar with the methodology of genetic algorithms it should come as no 
surprise that a number of questions relative to the best operation of the algorithm 
immediately arose. The Simple Genetic Algorithm frequently mentioned in the 
literature leaves open the optimal values of, at least, the following parameters: 

a) Probability of crossover (Pc). 
b) Probability of mutation (Pm). 
c) Population size. 
Additionally, premature and/or slow convergence are also of prime importance [3]. 
In the past we have conducted experiments [4] which led us to take the following 

decisions: 
a) We utilize Vasconcelos� scheme, i.e. selection is deterministic on an extreme 

crossover schedule with N-elitism. 
b) Crossover is annular. 
c) Mutation is uniform. 
In what follows we describe in more detail the points just outlined. 

2.1 The “Best” Genetic Algorithm 

Optimality in GA's depends on the model chosen. For reasons beyond the scope of 
this paper (but see reference [5]) we have chosen to incorporate in our model the 
following features: 

2.1.1 Initial population 
It was randomly generated. We decided not to bias the initial population in any sense for 
the reasons outlined above. For these work we selected initial populations of size 50. 

2.1.2 Elitism 
All of the individuals stemming from the genetic process are rated according to their 
performance. It has been repeatedly shown that elitism leads to faster convergence. 
Furthermore, simple elitism (and stronger versions) guarantee that the algorithm 
converges to a global optimum (although time is not bounded, in general). In figure 2 we 



     

show the kind of elitism implemented. This is called �full� elitism, where the best  N 
individuals of all populations (up to iteration t) are kept as those of the initial population 
of iteration t+1. 

2.1.3 Selection  
The individuals are selected deterministically. The best (overall) N individuals are 
considered. The best and worst individuals (1-N) are selected; then the second best and 
next-to-the-worst individuals (2-[N-1]) are selected, etc. 

 

 
Fig. 2. Full Elitism 

This is known as Vasconcelos� model of GA's. Vasconcelos� model has shown to 
guarantee that there is no premature convergence and that, as a consequence, it reaches 
generally better results than other models. Vasconcelos� coupling scheme is illustrated in 
figure 3. 

2.1.4 Crossover.  
It is performed with a probability Pc. In our GA Pc = 0.9 . Further, we adopted annular 
crossover. Annular crossover makes this operation position independent. In the past 
several authors [6] have attempted to achieve position independence in the genome. 
Annular crossover allows for unbiased building block search, a central feature to GA's 
strength. Two randomly selected individuals are represented as two rings (the parent 
individuals). Semi-rings of equal size are selected and interchanged to yield a set of 
offspring. Each parent contributes the same amount of information to their descendants. 

2.1.5 Mutation 
Mutation is performed with probability Pm =0.005. Mutation is uniform and, thus, is kept 
at very low levels. For efficiency purposes, we do not work with mutation probabilities 
for every independent bit. Rather, we work with the expected number of mutations  ̧
which, statistically is equivalent to calculating mutation probabilities for every bit. 
Hence, the expected number of mutations  E(m) is calculated from NmPE(m) ××= l , 



where l is the length of the genome in bits and N is the number of individuals in the 
population. Since the pattern representation consisted, in our case, of a 5625 bit long 
binary string( l = 5625),  Pm=0.005 and N=50 we have that E(m) = 1,406, i.e. in every 
generation 1,406 (out of 281,250) bits are randomly selected and complemented 
( 01and10 →→ ). 

 
Fig. 3. Deterministic Coupling 

3 Experiments 

We performed an initial set of experiments to test the scheme we have described. We 
designed 5 sets of 10 descendants each:  )f 5(Φ1),f 4(Φ1),f 3(Φ1),f 2(Φ1),f1(Φ1  and 5 
sets of 25 descendants each: )f5(Φ2),f 4(Φ2),f 3(Φ2),f 2(Φ2),f1(Φ2 . The descen-
dants were obtained by applying operators σ  and τ  as described above. These we 
matched vs. a master figure (the patterns and the master figure correspond to the ones 
shown in Figure 1.). The two following tables show the results for these experiments. The 
selection criterion is actually very simple: accept as an embedded pattern the one which 
shows the smallest δm∆ . 

In tables 1 and 2, the smallest δm∆  correspond to patterns 1 and 3, which are 
shown in Figure 1. The patterns not recognized are shown in the same figure. The 
master figure is shown in Figure 4. As seen, in this simple trial the correlation between 
the matches and what our intuition would dictate is accurate. This results are encouraging 
on two accounts: First, it would seem that the method, in general, should be expected to 
yield reasonably good results. Second, from the tables, it seems that whenever φ(f)  is 
enriched, the precision is enhanced. 



     

Table 1. Results for  1Φ . 

 
Table 2. Results for 2Φ . 

 
 
 

 

Table 3. Master Figure 

 

4 Conclusions 

In the method described above the genetic algorithm, by its own definition evolves 
under supervision of the environment [7], via the fitness function. However, the fitness 
function itself has been determined by a random sampling of the possible space of 
solutions. In that sense the search is unsupervised, in as much as the way the spectrum 
of the restricted sample space is "blind". Although we have proven that Vasconcelos� 



model is superior to alternative ones [8] still much work remains to be done. In the 
first place, the patterns and the master were specifically selected to validate the model 
in first instance. The figures that we attempted to recognize were directly embedded in 
the master. What would happen if the sought for relationship were not so 
straightforward? We intend to pursue further investigation along these lines. Secondly, 
although the results of the model, as reported, correspond to intuition, it is not clear 
that this intuition could be substantiated in general. For example, are we sure that the 
figure in pattern 4, for instance, is not informationally contained in the master? 
Thirdly, the measure that we used is amenable to reconsideration and enrichment. Do 
we have certainty that this direct difference is the best norm? We remarked earlier that 
a way to ensure that this norm is adequate is that the algorithm itself selects it. This is 
true in the sense that the genetic methodology assigns a certain degree of fuzziness to 
the measure. For example, the random walk implicit in the GA translates into the fact 
that the distance being minimized is adaptive. Similar distances (but not identical) 
would have been obtained by slight changes in the initial conditions set in the GA. 

Finally, the technical details were quite interesting in themselves. The mere 
process of applying the defined operators τandσρ,   became an interesting matter. 
The figures were to remain within the boundaries of the master's environment; the 
discreetness of the binary mapping disallowed certain arguments s, r and t1, t2; the 
repeated comparison of the probe vs. the patterns in   implied vast amounts of 
computation. In view of the technical shortcomings of the method, it remains to 
generalize it and prove its universality before attempting to solve large practical 
problems with it. We hope to report on the (successful) completion of the 
investigation shortly. 
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